Возьмем 20 коробок. В первую положим по одной карточке каждого вида, во вторую положим карточку 0, в третью - карточку 1,... в одиннадцатую - карточку 9. Коробки с двенадцатой по двадцатую оставим пустыми. Это было сделано для того, чтобы между коробками, содержащими карточки n было ровно n коробок.
Назовем нормой n сумму номеров коробок, содержащих карточку с номером n.
Заметим, что в данный момент норма n равна 1 + (1 + n + 1) = n + 3 [Одна карточка каждого вида лежит в коробке 1, а вторая карточка лежит через n коробок от нее - в коробке с номером 1 + n + 1], причем норма нечетных чисел четна, норма четных чисел нечетна. И правда:
1) пусть n - нечетно. Тогда норма n - четное число(как сумма нечетных чисел)
2) пусть n - четно. Тогда норма n - нечетное число(как сумма четного и нечетного чисел)
Так как среди цифр 5 четных и 5 нечетных, то сумма норм этих цифр нечетна [Сумма 5 нечетных чисел нечетна, сумма 5 четных чисел четна, тогда сумма всех норм нечетна как сумма четного и нечетного чисел]
Теперь, чтобы сохранить кол-во коробок между коробками с карточками одного вида, будем сдвигать карточки одного вида в одну сторону на одно и то же количество коробок. Допустим, что после нескольких сдвигов условие задачи выполняется.
Заметим, что четность нормы n при этом не изменится. И вправду: Пусть первая карточка n лежит в коробке a, вторая - в коробке b, сдвиг идет на k коробок. Норма до сдвига: a + b. Норма после сдвига: (a + k) + (b + k) = a + b + 2k - сумма нормы до сдвига и четного числа. Очевидно, что четности совпадают.
Значит и суммы норм до и после всех сдвигов совпадают по четности.
Очевидно, что сумма норм всех карточек после всех сдвигов при выполнении условия задачи равна сумме номеров коробок [Все коробки заняты, и в каждой по одной карточке].
Сумма номеров коробок в конце равна (1 + 20) / 2 * 20 = 21 * 10 = 210 - четное число. Противоречие с тем, что четность норм не меняется.
А значит и получить порядок карт, указанный в условии, невозможно
ответ: нет, нельзя
6 литров жидкости, содержанием спирта 85%
4 литра жидкости, с содержанием спирта 70%
Пошаговое объяснение:
Жидкость (1) + жидкость (2) = 10 литров жидкости (3)
Х - (литров), объем жидкости (2)
10-х - (литров), объем жидкости (1)
10 (литров), объем жидкости (3)
85% - содержание спирта в жидкости (1)
(х+66)% - содержание спирта в жидкости (2)
79% - содержание спирта в жидкости (3)
Составим уравнение:
85%*(10-х) + (х+66)%*х = 79% *10 --- переведем % в десятичную дробь (:100)
0,85*(10-х) + (0,01х+0,66)*х = 0,79*10
8,5 - 0,85х + 0,01х² + 0,66х - 7,9 = 0
0,01х² - 0,19х + 0,6 = 0 --- умножим на 100
х² - 19х + 60 = 0 --- квадратное уравнение
Д = (-19)² - 4*1*60 = 361-240 = 121 = 11² - дискриминант квадратного уравнения
Найдем корни квадратного уравнения
х₁ = ( - ( -19)+√121) / (2*1) = (19+11)/2 = 15 - не подходит, т.к. х < 10
х₂= ( - ( -19)-√121) / (2*1) = 8/2=4 - подходит, т.к. 4 < 10
Х =4 литра - объем жидкости (2)
10-х = 10-4=6 литров - объем жидкости (1)
Х+66 = 4+66= 70% - содержание спирта в жидкости (2)
Проверка:
85%*6 +70%*4 = 79%*10 --- переведем % в десятичную дробь (:100)
0,85*6 + 0,70*4 = 0,79*10
5,1 + 2,8 = 7,9
7,9=7,9 - Верно
х= 5+18*5
х= 5 + 90