М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВикаKull
ВикаKull
07.01.2022 07:54 •  Математика

№3 теплоход шел по реке 4 ч и по озеру 3 ч.всего он км.с какой скоростью теплоход шел по озеру,если по реке он шел со скоростью 48 км\ч? №4 решите уравнение: а)7y-35=21 б)4x+7x=132. №5 сумму 168 руб.можно составить из одинакового количества трехрублевых и пятирублевых монет.сколько нужно взять трехрублевых монет?

👇
Ответ:
dergacheva81
dergacheva81
07.01.2022
№3 (348-(48*4)) /3=52 км/ч
№4  7y-35=21
       7y=35+21
       7y=56
       y=8
№5  21 монету
4,6(28 оценок)
Ответ:
tanyucsgha
tanyucsgha
07.01.2022
5.   1)3х + 5х = 168
8х = 168
х = 168 : 8
х = 21 монета
проверка:
3 * 21 + 5 * 21 = 63 + 105 = 168
Всего нужно взять по 21 монете 3-хрублевого и 5-тирублевого достоинства.
ответ: нужно взять 21 монету 3-хрублевого достоинства.

2)
168 : 3 = 56 монет
Если же нужно эту же сумму составить только из 3-рублевых монет, то их уже нужно взять 56 штук.
4,8(85 оценок)
Открыть все ответы
Ответ:
AutumnIsBest
AutumnIsBest
07.01.2022
1. \begin{eqnarray*}
\begin{eqnarray*}
5x^2 - 3x + 7 = 0 \\ 
\end{eqnarray*}
\end{eqnarray*}
D = 9 - 4*7*5 = -131\
D \ \textless \ 0 - это значит, что действительных решений уравнения нет. 
2. Задание
\left \{ {{x^2 + y^2 = 41} \atop {y-x = 1}} \right.
Выражаем y из второго:
y = x+1
Подставляем в 1 уравнение:
x^2 + (x+1)^2 = 41
x^2 + x^2 + 2x + 1 = 41
2x^2 + 2x = 41 - 1
2x^2 + 2x = 40
x^2 + x - 20 = 0
D = 1 + 4*20 = 81
\sqrt{D} = 9
x_1 = \frac{-1+9}{2} = 4
x_2 = \frac{-1-9}{2} = -5
Теперь, зная значения х, находим значения y
y_1 = x_1 + 1 = 4+1 = 5
y_2 = x_2 + 1 = -5 + 1 = -4
ответ:
(4;5) и (-5;-4)
3 Задание.
x^3 + 27 = x^3 + 3^3
Мы видим сумму кубов, раскладываем по формуле сокращенного умножения, получаем:
x^3 + 3^3 = (x+3)(x^2 - 3x + 9) - разложили на множители. 
4 задание. 
a и b - это числа, которые надо найти.
a+b = 15
Их среднее арифметическое равно 
\overline{S} = \frac{a+b}{2} = \frac{15}{2} = 7,5
Среднее геометрическое этих двух чисел равно:
\overline{E} = \sqrt{ab}
По усовию среднее арифметическое больше на четверь ср.геометрического, то есть:
\overline{S} = (1+ \frac{1}{4}) \overline{E}
7,5 = \frac{5}{4} \sqrt{ab}
\sqrt{ab} = \frac{4*7,5}{5} = 6
Возведём в квадрат:
ab = 36
Теперь у нас получилась такая простая система:
\left \{ {{a+b = 15} \atop {ab = 36}} \right.
Решаем систему
a + \frac{36}{a} = 15
a^2 -15a + 36 = 0
D = 225 - 36*4 = 81
a_1 = \frac{15+9}{2} = 12
a_2 = \frac{15-9}{2} = 3
b_1 = \frac{36}{12} = 3
b_2 = \frac{36}{3} = 12
Вот мы и нашли числа a = 12 и b = 3, или наоборот. 
4,4(71 оценок)
Ответ:
abeloglazova891
abeloglazova891
07.01.2022
1. \begin{eqnarray*}
\begin{eqnarray*}
5x^2 - 3x + 7 = 0 \\ 
\end{eqnarray*}
\end{eqnarray*}
D = 9 - 4*7*5 = -131\
D \ \textless \ 0 - это значит, что действительных решений уравнения нет. 
2. Задание
\left \{ {{x^2 + y^2 = 41} \atop {y-x = 1}} \right.
Выражаем y из второго:
y = x+1
Подставляем в 1 уравнение:
x^2 + (x+1)^2 = 41
x^2 + x^2 + 2x + 1 = 41
2x^2 + 2x = 41 - 1
2x^2 + 2x = 40
x^2 + x - 20 = 0
D = 1 + 4*20 = 81
\sqrt{D} = 9
x_1 = \frac{-1+9}{2} = 4
x_2 = \frac{-1-9}{2} = -5
Теперь, зная значения х, находим значения y
y_1 = x_1 + 1 = 4+1 = 5
y_2 = x_2 + 1 = -5 + 1 = -4
ответ:
(4;5) и (-5;-4)
3 Задание.
x^3 + 27 = x^3 + 3^3
Мы видим сумму кубов, раскладываем по формуле сокращенного умножения, получаем:
x^3 + 3^3 = (x+3)(x^2 - 3x + 9) - разложили на множители. 
4 задание. 
a и b - это числа, которые надо найти.
a+b = 15
Их среднее арифметическое равно 
\overline{S} = \frac{a+b}{2} = \frac{15}{2} = 7,5
Среднее геометрическое этих двух чисел равно:
\overline{E} = \sqrt{ab}
По усовию среднее арифметическое больше на четверь ср.геометрического, то есть:
\overline{S} = (1+ \frac{1}{4}) \overline{E}
7,5 = \frac{5}{4} \sqrt{ab}
\sqrt{ab} = \frac{4*7,5}{5} = 6
Возведём в квадрат:
ab = 36
Теперь у нас получилась такая простая система:
\left \{ {{a+b = 15} \atop {ab = 36}} \right.
Решаем систему
a + \frac{36}{a} = 15
a^2 -15a + 36 = 0
D = 225 - 36*4 = 81
a_1 = \frac{15+9}{2} = 12
a_2 = \frac{15-9}{2} = 3
b_1 = \frac{36}{12} = 3
b_2 = \frac{36}{3} = 12
Вот мы и нашли числа a = 12 и b = 3, или наоборот. 
4,5(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ