Функция f(x)=3x²-x³ 1. Область определения - нет ограничений D(f) = R. 2.Точки пересечения графика с осями координат. При х = 0, у = 0 точка пересечения с осью Оу. При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3. 3.Промежутки возрастания и убывания. Находим производную функции и приравниваем её 0: f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0. Нашли 2 критические точки: х = 0 и х = 2. Находим знаки производной вблизи критических точек: х = -0.5 0 1.5 2 2.5 у' =6x - 3x² = -3.75 0 2.25 0 -3.75 . Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает. x < 0 и x > 2 функция убывает, 0 < x < 2 функция возрастает.
4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум: х = 0 минимум, х = 2 максимум.
Решала по-разному. У меня получается решение только в минутах. Переводим 3и1/3 часа в минуты = это 200 минут (заполняется весь бассейн через две трубы) 6 часов это 360 минут ( заполняется бассейн через одну трубу) 1) 720/360=2 м куб/мин - скорость заполнения через первую трубу 2) 720/200=3,6 м куб/мин - скорость заполнения через две трубы сразу 3) 3,6-2=1,6 м куб/мин - скорость заполнения через вторую трубу 4) 720/1,6=450 минут (переводим в часы 7,5 часов, то есть 7 и 1/2 часа) - время заполнения бассейна через вторую трубу.