М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LaputinaDaria
LaputinaDaria
18.06.2020 09:07 •  Математика

Треугольник задан вершинами а (7; —6), в(—2; —2) и с(1; 2). найти: 1) уравнение прямой am, параллельной стороне вс; 2) уравнение медианы ad 3) уравнение высоты bf; 4) угол в

👇
Ответ:
Полина33337
Полина33337
18.06.2020

1)найдем уравнение стороны BC

y=(4/3)x+2/3

AM будет иметь угол наклона равный 4/3, и проходить через точку A(7,-6)

3y-4x+46=0

2)Уравнение прямой проходящей через точки A (x a, y a) и P (x p, y p) в общем виде:

x-xa / xd-xa = y-ya / yd-ya

Мы не знаем координаты точки P, следовательно, нам необходимо найти направляющий вектор прямой AP.
координаты AB(-9;4)

координаты AC(-6;8)

отсюда AT(T вершнина достроенного параллелограмма) (-15;12)

подставим всё в уравнение

x-7 /-15-7 = y+6 / 12+6

получим уравнение 9x+11y=-3

это и есть искомое уравнение


3)BF перпендикулярна AC

т.е. угол наклона обратнопропорционален

уравнение прямой AC : y=-4/3 * x + 10/3

угол наклона BF = 3/4

уравнение BF: 3y-4x-2=0

4) координаты вектора ВС(3,4)

а вектора ВА(9,-4)

скалярное произведение этих векторов равно 3*9+4*(-4)=43

Длина BC=5

длина BA=корень(97)

cosB=43/(5*корень(97)
)

4,8(6 оценок)
Открыть все ответы
Ответ:
45r77yf
45r77yf
18.06.2020

1.несократимая

2.сократимая

3.неправильная

4.правильная

5.да

6.сложить числители и знаменатели.

привести к общему знаменателю, а затем сложить числители и знаменатель будет равен знаменателю данных дробей.

сложить числители и знаменатель будет равен знаменателю данных дробей.

7.привести к общему знаменателю, затем вычесть числители, а знаменатель будет равен знаменателю данных дробей.

вычесть числители и знаменатели.

вычесть числители, а знаменатель будет равен знаменателю данных дробей.

Пошаговое объяснение:

4,5(43 оценок)
Ответ:
Гавхарчик
Гавхарчик
18.06.2020

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,5(34 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ