1.несократимая
2.сократимая
3.неправильная
4.правильная
5.да
6.сложить числители и знаменатели.
привести к общему знаменателю, а затем сложить числители и знаменатель будет равен знаменателю данных дробей.
сложить числители и знаменатель будет равен знаменателю данных дробей.
7.привести к общему знаменателю, затем вычесть числители, а знаменатель будет равен знаменателю данных дробей.
вычесть числители и знаменатели.
вычесть числители, а знаменатель будет равен знаменателю данных дробей.
Пошаговое объяснение:
Пошаговое объяснение:
ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3
Пусть . Тогда
:
. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма
равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:
Решим методом интервалов:
+ - + +
----o----o----*---->
-1 -¹/₂ ¹/₂
Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:
Первое неравенство имеет решение (с учётом ОДЗ)
Второе неравенство раскладывается на множители:
Нули получившегося неравенства:
C учётом ОДЗ получаем, что в данном случае (левая граница меньше правой, так как √5 < 3).
Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:
Тогда промежутки не пересекаются, итоговый ответ:
1)найдем уравнение стороны BC
y=(4/3)x+2/3
AM будет иметь угол наклона равный 4/3, и проходить через точку A(7,-6)
3y-4x+46=0
2)Уравнение прямой проходящей через точки A (x a, y a) и P (x p, y p) в общем виде:
x-xa / xd-xa = y-ya / yd-ya
Мы не знаем координаты точки P, следовательно, нам необходимо найти направляющий вектор прямой AP.
координаты AB(-9;4)
координаты AC(-6;8)
отсюда AT(T вершнина достроенного параллелограмма) (-15;12)
подставим всё в уравнение
x-7 /-15-7 = y+6 / 12+6
получим уравнение 9x+11y=-3
это и есть искомое уравнение
3)BF перпендикулярна AC
т.е. угол наклона обратнопропорционален
уравнение прямой AC : y=-4/3 * x + 10/3
угол наклона BF = 3/4
уравнение BF: 3y-4x-2=0
4) координаты вектора ВС(3,4)
а вектора ВА(9,-4)
скалярное произведение этих векторов равно 3*9+4*(-4)=43
Длина BC=5
длина BA=корень(97)
cosB=43/(5*корень(97)
)