На утреннике были дети и мамы , вмевте 41. каждая мать пришла с с одним ребенком . сколько детей было на утреннике , если детей, которые пришли со своими мамами , было на семь больше, чем детей которые пришли без мам
Отнимаем 7 детей без мам 41-7 = 34. Их делим поровну на мам и детей 34/2 = 17 мам и 17 детей с мамами Прибавляем 7 детей без мам. Всего детей 17+7 = 24 ребенка. Всего людей было 24 ребенка +17 мам = 41 человек. ответ: Детей 17 чел.
Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Вычислим вероятность того, что с полки взяли 2 не учебника. Тогда искомая вероятность есть дополнение этой вероятности до 1.
Вероятность достать не учебник первый раз равна (10-3)/10 = 7/10. Вероятность достать не учебник во второй раз равна (9-3)/9 = 6/9 = 2/3 (второй раз книга берется в случае, если в первый взяли не учебник. На полке осталось 9 книг, из них по-прежнему 3 - учебники).
Полная вероятность равна произведению вероятностей этих вариантов: 7/10 · 2/3 = 7/15.
Значит, вероятность получить среди 2 книг учебник равна 1 - 7/15 = 8/15 > 1/2(!).
--- Можно сосчитать и напрямую. Варианты достать учебник с полки у нас такие: 1. Достать учебник и учебник. Вероятность равна 3/10 · 2/9 = 1/15 = 2/30. 2. Достать учебник и книгу. Вероятность равна 3/10 · 7/9 = 7/30. 3. Достать книгу и учебник. Вероятность равна 7/10 · 3/9 = 7/30.
41-7 = 34. Их делим поровну на мам и детей
34/2 = 17 мам и 17 детей с мамами
Прибавляем 7 детей без мам.
Всего детей 17+7 = 24 ребенка.
Всего людей было 24 ребенка +17 мам = 41 человек.
ответ: Детей 17 чел.