НОД (Наибольший общий делитель) 75 и 90
Наибольший общий делитель (НОД) двух данных чисел 75 и 90 — это наибольшее число, на которое оба числа 75 и 90 делятся без остатка.
НОД (75; 90) = 15.
Как найти наибольший общий делитель для 75 и 90
Разложим на простые множители 75
75 = 3 • 5 • 5
Разложим на простые множители 90
90 = 2 • 3 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
3 , 5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (75; 90) = 3 • 5 = 15
НОК (Наименьшее общее кратное) 75 и 90
Наименьшим общим кратным (НОК) 75 и 90 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (75 и 90).
НОК (75, 90) = 450
Как найти наименьшее общее кратное для 75 и 90
Разложим на простые множители 75
75 = 3 • 5 • 5
Разложим на простые множители 90
90 = 2 • 3 • 3 • 5
Выберем в разложении меньшего числа (75) множители, которые не вошли в разложение
5
Добавим эти множители в разложение бóльшего числа
2 , 3 , 3 , 5 , 5
Полученное произведение запишем в ответ.
НОК (75, 90) = 2 • 3 • 3 • 5 • 5 = 450
ясно, что двигаясь вниз и вправо, независимо от формы пути, фоксу нужно будет сделать 6 ходов, чтобы из левой верхней клетки попасть в правую нижнюю. из этих шести ходов 3 обязательно будут на одну клетку вниз, а 3 - на одну клетку вправо. поскольку после каждого ходачисло под фишкой меняется, то имеем перестановку из 6 элементов двух разных типов, по три каждого типа. чтобы подсчитать общее количество вариантов достижения правой нижней клетки применяем формулу для числа перестановок n элементов с повторениями:
p = n! / (n1! где n=6; n1=3 и n2=3.
подставляя, получаем
p=6! / (3! 3! )=720/36=20
ответ: 20
2) 21/15= 7/5 = 1 целая 2/5