Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
ответ: 12 шашек.
(-8; 4).
Пошаговое объяснение:
Система неравенств:
7(3x + 2) - 3(7x + 2) > 2x;
(x - 5)*(x + 8) < 0.
1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
ответ: (-8; 4).