Дано точки K(5;0;3), M(-1;2;0), N(1;-4;1) і площину a яка має рівняння 2x+2y-z+2=0.
1) Яке рівняння площини бета яка проходить через точку K і перпендикулярна до вектора MN?
Находим вектор MN = (1-(-1); -4-2; 1-0) = (2; -6; 1).
Этот вектор будет нормальным вектором искомой плоскости.
Определяем уравнение плоскости, проходящей через точку К .
2(x - 5) - 6(y - 0) + 1(z - 3) = 2x -6y + 1z - 13 = 0.
ответ: 2x - 6y + z - 13 = 0.
2) яке рівняння прямої (l1), що проходить через точки M і N?
Вектор MN уже найден и равен (2; -6; 1).
Отсюда уравнение прямой:
MN: (x + 1)/2 = (y - 2)/(-6) = (z - 0)/1.
ответ: (x + 1)/2 = (y - 2)/(-6) = z/1.
3) яке рівняння прямої (l2), що проходить через точку K і перпендикулярна площині a?
Плоскость а - это заданная плоскость 2x+2y-z+2=0.
Её нормальный вектор (2; 2; -1) будет направляющим вектором для прямой, проходящей через точку К перпендикулярно к заданной плоскости.
ответ: (x - 5)/2 = y/2 = (z - 3)/(-1).
2 1/2 × (2/15- 3 5/6)-2 3/4
2/15-3 5/6= 2/15-23/6=4/30-115/30= -111/30
2 1/2×(-111/30)= -5/4×111/30= -111/24
-111/24-2 3/4= -111/24-11/4= -111/24-66/24= -177/24= -7 9/24= - 7 3/8
- 1 1/7 ×(4/5+19/20)×(6 5/6+4 2/3)
4/5+19/20=16/20+19/20=35/20=7/4
6 5/6+4 2/3=10 (5/6+2/3)= 10(5/6+4/6)= 10(9/6)=
10(3/2)=10+1 1/2=11 1/2=23/2
-8/7×7/4×23/2= -23
(6 3/8-2 3/4)×(-4)+ 7/18×9
6 3/8-2 3/4=4(3/8-6/8)= 4-3/8=3 5/8=29/8
29/8×(-4)= -29/2
7/18×9=7/2
-29/2+7/2= -22/2= -1
9 1/6: (4 1/3-8)+24× 3/8
4 1/3-8= -3 2/3= - 11/3
9 1/6÷(-11/3)=55/6×(-3/11)= -5/2
24×3/8=9
-5/2+9=9- 2 1/2= 6 1/2
Пошаговое объяснение:
Сумма цифр этого числа 9*27+3 делится на 3,поэтому всё число делится на 3.