35+(16*4-12*3)*2-46=45
1) 16*4=64, 2)12*3=36, 3)64-36=28, 4)28*2=56, 5)35+56=91, 5)91-46=45
12*(35-8*4)+(70:5+29)=79
1) 8*4=32, 2) 35-32=3, 3)70/5=14, 4) 14+29=43, 5) 12*3=36, 5)36+43=79
(16*5+20)-(45:9+37)=
1)16*5=80, 2)80+20=100, 3)45/9=5., 4)5+37=42, 5)100-42=58
диагонали ромба пересекаются под прямым углом, а значит
Площадь ромба(основания призмы) Sосн. = d1*d2/2 = 10*24/2 = 120;
меньшая диагональ призмы - 26см, вместе с меньшей диагональю ромба 10см и высотой призмы она составляет прямоугольный треугольник. Где меньшая диагональ призмы есть гипотенуза. Вычислим высоту призмы из теоремы Пифагора: сумма квадратов катетов равна квадрату гипотенузы: h^2 = 26^2 - 10^2 = 576; h = 24;
Еще нужно вычислить ребро основания призмы. Тоесть сторону ромба, зная его диагонали. Опять таки можно применить теорему Пифагора, разделив ромб на 4 прямоугольных треугольника, где две полу диагонали ромба, есть катеты этих прямоугольных треугольников, а сторона ромба есть гипотенуза. Cромба^2 = d1^2/2 + d2^2/ = √119 ≈ 11
Площадь грани равна произведению стороны основания(ромба) на высоту призмы. Sграни = h * Cромба = 24*11 = 264
Полная поверхность призмы = 4 площади граней + 2 площади основания.
Sполная = 4 Sграни + 2 Sосн = 4*264 + 2*120 = 1296
35+(16*4-12*3)*2-46=45
1) 16*4=64, 2)12*3=36, 3)64-36=28, 4)28*2=56, 5)35+56=91, 5)91-46=45
12*(35-8*4)+(70:5+29)=
1) 8*4=32, 2) 35-32=3, 3)70/5=14, 4) 14+29=43, 5) 12*3=36, 5)36+43=79
(16*5+20)-(45:9+37)=
1)16*5=80, 2)80+20=100, 3)45/9=5., 4)5+37=42, 5)100-42=58