ответ: Точка (2;3;–1) принадлежит данной прямой.
Составим уравнение прямой || нормальному вектору плоскости
n=(1;4;–3)
(x–2)/1=(y–3)/4=(z–1)/(–3)
Найдем координаты точки K – точки пересечения этой прямой и плоскости
Решаем систему:
{(x–2)/1=(y–3)/4=(z–1)/(–3)
{x+4y–3z+7=0
Обозначим отношение
(x–2)/1=(y–3)/4=(z–1)/(–3) = λ ⇒
получим параметрические уравнения прямой
x= λ +2
y= 4λ +3
z=–3 λ +1
подставим в уравнение плоскости
( λ +2) +4·(4λ +3)–3·(–3 λ +1)+7=0
26 λ=–18
λ=–9/13
xК=(–9/13)+2=
yК=4·(–9/13)+3=
zК=–3·(–9/13)+1=
Найдем координаты точки В – точки пересечения данной прямой и данной плоскости.
Решаем систему:
{(x–2)/5=(y–3)/1=(z+1)/2
{x+4y–3z+7=0
Обозначим отношение
(x–2)/5=(y–3)/1=(z+1)/2=t ⇒
получим параметрические уравнения прямой
x=5t+2
y=t+3
z=2t+1
подставим в уравнение плоскости
5t+2+4·(t+3)–3·(2t+1)+7=0
3t=–18
t=–6
x=5·(–6)+2=–28
y=–6+3=–3
z=2·(–6)+1=–11
В(–28; –3; –11)
Составляем уравнение прямой ВК, как уравнение прямой, проходящей через две точки
Пошаговое объяснение:
2536 кг + 89763 кг = 92299 кг = 92 т 299 кг
89763 кг - 2536 кг = 87227 кг = 89 т 227 кг
74689 м и 56934 дм
74689 м = 746890 дм
746890 дм + 56934 дм = 803824 дм
746890 дм - 56934 дм = 689956 дм
2 часа и 3265 секунд
2 часа = 3600 секунд
3600 с + 3265 с = 6865 с
3600 с - 3265 с = 335 с
658 м³ и 324 дм³
658 м³ = 658000 дм³
658000 дм³ + 324 дм³ = 658324 дм³
658000 дм³ - 324 дм³ = 657676 дм³