М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Олька1824
Олька1824
26.12.2020 15:36 •  Математика

Пруд зарастает водяными лилиями. на первый день выросла одна лилия, на второй день — две лилии, на третий день — четыре лилии, на четвёртый день — восемь лилий, и так на каждый следующий день число лилий удваивалось. наконец, на 24 день пруд зарос полностью. на который день пруд зарос наполовину? (запиши номер дня)

👇
Ответ:
Dmitry321123
Dmitry321123
26.12.2020
24:2=12(Д)-зарос наполовину
4,5(94 оценок)
Открыть все ответы
Ответ:
Hdzf2002
Hdzf2002
26.12.2020
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
     Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
     Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(98 оценок)
Ответ:
Lukachyk2017
Lukachyk2017
26.12.2020
   Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
   Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
   Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(19 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ