М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kukitoria666
Kukitoria666
25.07.2020 12:38 •  Математика

Вдвух мешках было 75 кг крупы. после того ка из первого мешка продали 12кг, а из второго-18 кг, в первом мешке крупы оказалось в 2 раза больше, чем во втором. сколько кг крупы было в каждом мешке первоначально? решить не уравнением

👇
Ответ:
белка2010
белка2010
25.07.2020
1) 12+18=30 (кг) - продали
2) 75 - 30= 45 (кг) - осталось в двух мешках
3) Т. к. в 1-м мешке осталось в 2 раза больше муки, значит, весь мешок - 3/3 (т.к. 2/3+1/3=3/3), в 1-м мешке соответственно 2/3 части муки, а во 2-м - 1/3, поэтому 45:3=15 (кг) - осталось во 2-м мешке
4) 15 х 2 = 30 (кг) - осталось в 1- мешке
5) 30 + 12= 42 (кг) - было в 1-м мешке 
6) 15+18=33 (кг) - было во 2-м мешке
ответ: 42 кг муки было в первом мешке, 33 кг муки во втором мешке первоначально.
Проверка: 42+33=75 (кг)
4,6(1 оценок)
Открыть все ответы
Ответ:
zalinairina9
zalinairina9
25.07.2020

Пусть сторона нижнего основания а, верхнего -в.

По заданию в  = (2/3)а.

Проведём диагональное сечение.

В сечении - равнобокая трапеция высотой 3 и углом при нижнем основании 60 градусов.

Верхнее основание равно в√2 = (2/3)а√2.

Нижнее основание равно равно а√2.

Так как угол 60 градусов, то разница а√2 - (2/3)а√2 = (1/3)а√2 равна боковой стороне.

Боковая сторона равна 3/sin 60° = 3/(√3/2) = 6/√3 = 2√3.

Приравняем (1/3)а√2 = 2√3, отсюда а = 6√(3/2).

Сторона в = (2/3)а = (2/3)*6√(2/3) = 4√(3/2).

Проекция бокового ребра на нижнее основание равна

3/tg60° = 3/√3 = √3.

Спроецируем этот отрезок на сторону нижнего основания.

√3*cos45° = √3*(1/√2) = √(3/2).

Отсюда находим наклонную высоту боковой грани.

hн = √((2√3)² - (√(3/2)²) = √(12 - (3/2)) = √(21/2).

Находим площадь боковой поверхности пирамиды.

Периметры:

- верхнего основания Р1 = 4*4√(3/2) = 16√(3/2),

- нижнего основания Р2 = 4*6√(3/2) = 24√(3/2).

Тогда Sбок = (1/2)(Р1 + Р2)*hн = 20√(3/2)*√(21/2) = 30√7.

S1 = (4√(3/2))² = 24,

S1 = (6√(3/2))² = 54.

ответ: S = S1  + S2 + Sбок = 24 + 54 + 30√7 = 78 + 30√7.

4,4(20 оценок)
Ответ:
кики50
кики50
25.07.2020

Пусть сторона нижнего основания а, верхнего -в.

По заданию в  = (2/3)а.

Проведём диагональное сечение.

В сечении - равнобокая трапеция высотой 3 и углом при нижнем основании 60 градусов.

Верхнее основание равно в√2 = (2/3)а√2.

Нижнее основание равно равно а√2.

Так как угол 60 градусов, то разница а√2 - (2/3)а√2 = (1/3)а√2 равна боковой стороне.

Боковая сторона равна 3/sin 60° = 3/(√3/2) = 6/√3 = 2√3.

Приравняем (1/3)а√2 = 2√3, отсюда а = 6√(3/2).

Сторона в = (2/3)а = (2/3)*6√(2/3) = 4√(3/2).

Проекция бокового ребра на нижнее основание равна

3/tg60° = 3/√3 = √3.

Спроецируем этот отрезок на сторону нижнего основания.

√3*cos45° = √3*(1/√2) = √(3/2).

Отсюда находим наклонную высоту боковой грани.

hн = √((2√3)² - (√(3/2)²) = √(12 - (3/2)) = √(21/2).

Находим площадь боковой поверхности пирамиды.

Периметры:

- верхнего основания Р1 = 4*4√(3/2) = 16√(3/2),

- нижнего основания Р2 = 4*6√(3/2) = 24√(3/2).

Тогда Sбок = (1/2)(Р1 + Р2)*hн = 20√(3/2)*√(21/2) = 30√7.

S1 = (4√(3/2))² = 24,

S1 = (6√(3/2))² = 54.

ответ: S = S1  + S2 + Sбок = 24 + 54 + 30√7 = 78 + 30√7.

4,4(94 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ