М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EvaPark1997
EvaPark1997
09.02.2021 07:50 •  Математика

Вообще я не сравнить значения выражения и записать результаты в виде неравенств. 1) х+0,5 и ,3) 2) у+(-3/4) и у-(+1/2) 3) n: (-7) и n : 7 4) (- n): (-3) и n: (-3)

👇
Ответ:
timurqwerty
timurqwerty
09.02.2021
1) х + 0,5 > x + 0,3
2) y - 3/4 < y - 1/2
3) n : - 7  < n : 7
4) (-n) :(-3) = n/3;  n : (-3) = -n/3
    (- n) : (-3) > n : (-3)
4,4(53 оценок)
Ответ:
polyzaicka
polyzaicka
09.02.2021
1) х+0,5 и х-(-0,3) (двойное отрицание дает плюс)
х+0,5 >х+0,3 
2) у+(-3/4) и у-(+1/2)
y-3\4 и y -1\2 (приводим к общему знаменателю)
y-3\4<y-2\4
3) n:(-7) и n : 7
-1\7n<1\7n
4) (- n):(-3) и n:(-3)
     1\3n>-1\3n
4,4(76 оценок)
Открыть все ответы
Ответ:
лиана247
лиана247
09.02.2021

Рассмотрим осевое сечение конуса. ΔABC - равносторонний. А - вершина конуса, BC - диаметр основания конуса. В треугольник вписан круг, это осевое сечение шара.  

Пусть AH⊥BC и H∈BC. Тогда AH - высота и медина, правильного ΔABC. Поэтому H - центр основания конуса (BH=HC, середина диаметра). Значит, AH - высота конуса.

Рассмотри ΔAHC: ∠H=90°; ∠C=60°, как угол правильного треугольника; ctg C = HC/AH ⇒ HC=AH·ctg60° = AH/√3. HC - радиус конуса.

V(кон.) = \dfrac13 h·S(осн.) = \dfrac13 AH·π·HC² = \dfrac{\pi}9 AH^3

Радиус вписанного в правильный треугольник круга, равен трети от высоты. OH=AH/3. OH - радиус шара.

V(шара) =  \dfrac43 π·R³ = \dfrac43 π·OH³ = \dfrac{4\pi}{81} AH^3

V(шара) = \dfrac49 V(кон.) = \dfrac{4}9 \cdot 36 = 4² = 16

ответ: 16.


Найдите объем шара,вписанного в конус объемом 36,если осевое сечение конуса является равносторонним
4,5(57 оценок)
Ответ:
krivisasha4
krivisasha4
09.02.2021

Рассмотрим осевое сечение конуса. ΔABC - равносторонний. А - вершина конуса, BC - диаметр основания конуса. В треугольник вписан круг, это осевое сечение шара.  

Пусть AH⊥BC и H∈BC. Тогда AH - высота и медина, правильного ΔABC. Поэтому H - центр основания конуса (BH=HC, середина диаметра). Значит, AH - высота конуса.

Рассмотри ΔAHC: ∠H=90°; ∠C=60°, как угол правильного треугольника; ctg C = HC/AH ⇒ HC=AH·ctg60° = AH/√3. HC - радиус конуса.

V(кон.) = \dfrac13 h·S(осн.) = \dfrac13 AH·π·HC² = \dfrac{\pi}9 AH^3

Радиус вписанного в правильный треугольник круга, равен трети от высоты. OH=AH/3. OH - радиус шара.

V(шара) =  \dfrac43 π·R³ = \dfrac43 π·OH³ = \dfrac{4\pi}{81} AH^3

V(шара) = \dfrac49 V(кон.) = \dfrac{4}9 \cdot 36 = 4² = 16

ответ: 16.


Найдите объем шара,вписанного в конус объемом 36,если осевое сечение конуса является равносторонним
4,5(49 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ