Если условие записано ВЕРНО, то будем решать (х²-7х+13)²-(х-3)(х-4)=1 Перемножаем (х-3)(х-4)=х²-3х-4х+12=х²-7х+12 Сравниваем с (х²-7х+13)² - видим, что отличаются на 1.
Обозначим х²-7х+12=а Получим (а+1)²-а=1 (а+1)²=а+1 Можно разделить на (а+1) - но при этом УСЛОВИЕ, что а+1 НЕ РАВНО нулю (ведь деление на нуль невозможно), т.е. а не равно -1
Проверим, ЧЕМ не может быть х (когда а=-1) х²-7х+12=-1 , если х²-7х+13=0 Корней НЕТ.
Итак, делим (а+1)²/(а+1)=(а+1)/(а+1) а+1=1 а=0
Возвращаемся к исходному а=х²-7х+12 Значит, х²-7х+12=0
Пусть дан круг радиуса R. Надо поделить его на три равные части с циркуля. Раскройте циркуль на величину радиуса круга. Можно воспользоваться при этом линейкой, а можно поставить иглу циркуля в центр круга, а ножку отвести до окружности, описывающей круг. Линейка в любом случае еще пригодится позже.Установите иглу циркуля в произвольном месте на окружности, описывающей круг, и грифелем нарисуйте небольшую дугу, пересекающую внешний контур круга. Затем установите иглу циркуля в найденную точку пересечения и еще раз проведите дугу тем же радиусом (равным радиусу круга). Повторяйте эти действия, пока следующая точка пересечения не совпадет с самой первой. Вы получите шесть точек на окружности, расположенных через равные промежутки. Остается выбрать три точки через одну и линейкой соединить их с центром круга, и вы получите поделенный натрое круг