М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sofi190
sofi190
26.10.2020 23:24 •  Математика

Решить: -7х+18х-5х=-45 6х-12=4х+26 4(х+8)=62

👇
Ответ:
AntohaPastuha
AntohaPastuha
26.10.2020
-7х+18х-5х=45
6х=45
х=4566
х=7.5

6х-12=4х+26
6х-4х=26+12
2х=40
х=20

4(х+8)=62
4х+32=62
4х=62-32
4х=30
х=30:4
х=7.5
4,7(97 оценок)
Открыть все ответы
Ответ:
blazhenko66
blazhenko66
26.10.2020
Решение. скорость сближения ракет равна 12000 + 18000 = 30000 км/ч. за минуту до встречи между ними будет такое расстояние, на которое они сблизятся ровно за эту минуту, то есть нужно скорость сближения умножить на время (и неважно, какое расстояние было между ними не забудем перевести всё к одним единицам измерения, для чего заметим, что за минуту ракеты сблизятся на в 60 раз меньшее расстояние, чем за час, то есть скорость в км/мин будет в 60 раз меньше скорости в км/ч: 30000 км/ч · 1 мин = 500 км/мин · 1 мин = 500 км.
4,6(76 оценок)
Ответ:
Liza111333
Liza111333
26.10.2020
Дано:

Правильная четырехугольная пирамида SABCD.        

S_{\tt bok }(SABCD) = 45 (см²).

SH = h = 5 (см).

Найти:

a - сторону основания.

Решение:

Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:

\displaystyle S_{\tt bok} = 2ab, где a - сторона основания и b - апофема (высота боковой грани, проведенная из вершины).

Попробуем выразить b через a (сторону основания) и h=5 (см) (высоту пирамиды).

Рассмотрим прямоугольный \triangle SHM (где M - середина AB). В нем SH=5 (см), а MH = a/ 2 (см) (как половина стороны квадрата, равной a см).

По теореме Пифагора:

\displaystyle SH^2+MH^2=SM^2\\\\5^2 + \bigg ( \frac{ a }{2} \bigg )^2 = b^2 \\\\25 + \frac{a^2}{4} = b^2 \\\\b = \sqrt{\frac{a^2+100}{4} }

Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что a - неотрицательное):

\displaystyle S_{\tt bok} = 2ab \\\\45 = 2 \cdot a \cdot \sqrt{ \frac{a^2+100}{4} } \\\\2025 = 4 \cdot a^2 \cdot \frac{a^2+100}{4} \\\\2025 = a^2 \cdot (a^2 + 50)

Пусть a^2=t:

\displaystyle 2025 = t(t + 100)\\\\t^2 + 100t - 2025=0 \\\\t_1 = \frac{-b+\sqrt{b^2-4ac} }{2a} = \frac{ -100 + \sqrt{18100} }{2} = -50 +{5\sqrt{181} } -50 + {5\sqrt{169} } 0 \\\\t_2 = \frac{-b-\sqrt{b^2-4ac} }{2a} = \frac{ -100 - \sqrt{18100} }{2} = -50 -{5\sqrt{181} } < 0

Второй корень нам не подходит по причине отрицательности. Значит:

\displaystyle a = \sqrt{ {5\sqrt{181}}-50}

Задача решена!

ответ:   \displaystyle \sqrt{ {5\sqrt{181}}-50} или около 4,16 (см).
Определите сторону основания правильной четырехугольной пирамиды, если её высота 5 см, а площадь бок
4,7(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ