М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mastheadchan1
mastheadchan1
26.06.2021 15:03 •  Математика

На конкурсе поваров настя выполнила за 20 минут,а даша за 25 минут.на сколько минут раньше даши настя выполнила ? на сколько минут дольше насти выполняла это даша

👇
Ответ:
Влад880035355
Влад880035355
26.06.2021
25-20=5(мин)
ответ:на 5 минут Настя выполнила это задание раньше чем Даша.
4,4(1 оценок)
Ответ:
tsattorzoda99
tsattorzoda99
26.06.2021
25-20=5(мин.) 
ответ:на 5 минут  больш
4,4(38 оценок)
Открыть все ответы
Ответ:

7

Пошаговое объяснение:

Вспомним признак делимости на 9: число делится на 9 тогда и только тогда, когда его сумма цифр делится на 9.

Этот признак работает и для равноостаточности при делении на 9. То есть, число и его сумма цифр имеют одинаковый остаток при делении на 9.

Пусть a_1 - изначальное число и a_n - сумма цифр числа a_n_-_1. Пусть остаток при делении на 9 у числа a_1 - r, тогда и у числа a_2 остаток при делении на 9 тоже r. Но тогда и у чисел a_3,a_4,a_5,...a_n остаток при делении на 9 равен r. Но так как r - чисто от 0 до 9, то это и есть наша оставшаяся в конце цифра.

Тогда нам нужно всего лишь найти остаток при делении на 9 у числа  2^2^0^2^0. А он такой же, как у числа 16^5^0^5, и такой же, как у числа (16-9)^5^0^5, и такой же, как у числа 7*49^2^5^2, а он такой же, как у числа 7*1^1^2^6, а это равно 7.

4,8(34 оценок)
Ответ:
Андрей11583
Андрей11583
26.06.2021

\int\limits^{0,25}_{0,125} {(8x+1)^2} \, dx =\int\limits^{0,25}_{0,125} {64x^2+16x+1} \, dx=(\frac{64x^3}{3}+8x^2+x )|^{0,25}_{0,125}=1,083(33)-0,1822916(66)=0,9010416(/tex]</p><p></p><p>[tex]\int\limits^{\sqrt8}_{\sqrt3} {x(\sqrt{x+1})^2} \, dx =\left[\begin{array}{ccc}u=\sqrt{x+1} \\du=\frac{dx}{2\sqrt{x+1} } \end{array}\right] \int\limits^{\sqrt8}_{\sqrt3} {2u(u^2-1)^2+2u(u^2-1)} \, du=\left[\begin{array}{ccc}t=u^2-1\\dt=2u\,du\end{array}\right] {1}{2}\int\limits^{\sqrt8}_{\sqrt3} {t^2} \, dt=(\frac{(u^2-1)^3}{6})|^{\sqrt8}_{\sqrt3}=(\frac{x^3}{3}-x+\frac{(x+1)^2}{2}-1)|^{\sqrt8}_{\sqrt3} = {{2^{{{9}\over{2}}}+12}\over{3}}-{{{3}+3}\over{2}

4,7(55 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ