М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aidafarhadova
aidafarhadova
04.06.2022 23:49 •  Математика

Aумножить на 73 равно 64244 минус 28547

👇
Ответ:
Антон1700
Антон1700
04.06.2022
А•73=64 244 - 28 547
А•73=35697
А=35697:73
А=489
ответ:489
4,6(53 оценок)
Открыть все ответы
Ответ:
zulu51
zulu51
04.06.2022
Бутем пользоваться терминологией мощности множества.

Множество A называется счетным, если можно построить взаимооднозначное соответствие его элементов с элементами множества натуральных чисел и несчетным, если его построить нельзя.

Утверждение 1. Объединение двух счетных множеств счетно.
Доказательство:
Пусть есть множества
a_1 a_2 ... a_n ...\\b_1 b_2 ... b_n ...
Запишем их объединение как
a_1 b_1 a_2 b_2 ... a_n b_n ...
И пронумеруем их:
Номер a_i равен 2i-1
Номер b_i равен 2i
Если в этих множествах есть повторяющиеся - уберем повторения и уменьшим номера последующих
Построили взаимооднозначное соответствие и доказали утверждение.

Утверждение 2. Объединение конечного и счетного множества счетно.
Доказательство еще более очевидно, чем в первом - поставим сначала все элементы конечного множества (которых нет в счетном), а затем все из счетного и пронумеруем.

Утверждение 3. Множество рациональных чисел счетно.
Докажем, что множество неотрицательных рациональных чисел счетно. Тогда множество неположительных рациональных чисел также счетно и их объединение будет счетным.
Доказательство:
Выпишем таблицу в которой в строке i будут находиться числа со знаменателем i, а в столбце j будут находиться числа с числителем j-1
0/1\ 1/1\ 2/1\ ...\\
0/2\ 1/2\ 2/2\ ...\\
...\ ...\ ...\ ...\ ...\ ...
Пронумеруем "по диагоналям"
Сначала левый верхний элемент, затем элемент, стоящий справа от него, затем по диагонали влево вниз все элементы, затем элемент стоящий в первой строке на 3 месте и вниз по диагонали и так далее.
Получили последовательность
0/1 1/1 0/2 2/1 1/2 0/3 3/1 ...
Пронумеровали все элементы, но есть повторяющиеся - выкинем их. Осталось
0 1 2 1/2 3 1/3 4 3/2 2/3 1/4 ...
Опять таки пронумеровали, только уже все множество неотрицательных рациональных чисел без повторений, чем доказали его счетность

Утверждение 4. Можно построить взаимозначное соответствие элементов множеств действительных чисел сегмента [0;1] и бесконечных последовательностей из 0 и 1.
Доказательство заключается в том, что действительное число можно представить как в виде бесконечной десятичной дроби, так и бесконечной двоичной.

Теорема. Множество бесконечных последовательностей 0 и 1 несчетно.
Доказательство:
Допустим обратное. Тогда можно записать в виде последовательности
a_1 a_2 ... a_n ...
каждый элемент этой последовательности - последовательность 0 и 1, то есть можно записать в виде
a_1=a_{11} a_{12}...a_{1n}...\\
a_2=a_{21} a_{22}...a{2n}...\\
...\ ...\ ...\\
a_n=a_{n1} a_{n2}...a_{nn}...\\
...\ ...\ ...
Тогда число, составленное из элементов, стоящих на главной диагонали  и число обратное к нему (обратное в смысле, что если на некоторой позиции у элемента стоит k, то у обратного 1-k) тоже здесь есть, но у обратного:
a_t=(1-a_{11}),\ (1-a_{22}), ...
На позиции t стоит стоит обратный. Противоречие.

Отсюда множество рациональных чисел счетно, а действительных от 0 до 1 - несчетно.
В терминах условия "множество реальных чисел от 0 до 1 больше, чем множество рациональных чисел"
4,5(26 оценок)
Ответ:

а) на доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после семи таких операций на доске будет только одно число. может ли оно равняться 97?

б) на доске выписаны числа 1, 21, 2², 2³, 210. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после нескольких таких операций на доске будет только одно число. чему оно может быть равно?

решение

  a) получить 97 можно, например, так. последовательно вычитая из 16 числа 8, 4, 2, 1, получим 1. на доске остались числа 1, 32, 64, 128. далее: бикю 64 – 32 = 32,   32 – 1 = 31,   128 – 31 = 97.

  б) докажем, что если на доске выписаны числа 1, 2, 2n, то после n операций, описанных в условии, может получиться любое нечётное число от 1 до   2n – 1.   очевидно, числа, большие 2n, на доске не появляются. легко видеть также, что на доске всегда присутствует ровно одно нечётное число. значит, и последнее оставшееся на доске число нечётно. утверждение о том, что все указанные числа построить можно, докажем индукцией по n.

  база. имея числа 1 и 2, можно получить только число 1.

  шаг индукции. пусть на доске выписаны числа 1, 2, 2n+1. любое нечётное число, меньшее 2n, можно получить за   n + 1   операцию (на первом шаге сотрём 2n+1 и 2n и напишем 2n, далее по предположению индукции). нечётные числа от   2n + 1   до   2n+ 1 – 1   можно записать в виде   2n+1 – a,   где число a можно получить из набора 1, 2, 2n. на последнем шаге из   2n+1 вычитаем a.

ответ

а) может;   б) любому нечётному числу от 1 до   210 – 1.

замечания

: 2 + 3

4,7(39 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ