24
Пошаговое объяснение:
Обозначим первую цифру числа за х, а вторую за y. Зная, что число у нас двузначное, х будет числом десятков, а у - числом единиц, то есть наше число равно 10х+у.
Сумма цифр - это х+у. Она в четыре раза меньше 10х+у, запишем уравнение:
10х+у=4(х+у)
10х+у=4х+4у
Перенесем все в левую часть:
10х+у-4х-4у=0
6х-3у=0
Сократим на 3:
2х-у=0
у=2х
Произведение цифр числа - это х*у. Если прибавить его к нашему числу 10х+у, мы получим 32. Запишем уравнение:
10х+у+х*у=32
Заменим у на найденные в предыдущем уравнении 2х:
10х+2х+2х*х=32
2х^2+12х=32
Перенесем все в левую часть и получим квадратное уравнение:
2x^2+12x-32=0
Сократим на 2:
x^2+6x-16=0
D=36+64=100
x1,2=(-6+-10)/2
x1=-8, х2=2. Отрицательные числа нам не подходят, таким образом, х=2. у=2х, тогда у=2*2=4.
Наше число - 24. Проверим: сумма цифр 2+4=6, 24/6=4. Действительно в 4 раза больше суммы цифр. 24+2*4=24+8=32, действительно равно 32. Все в порядке.
ответ: 24
Пошаговое объяснение:
1) 16х · (-8/15b) · 45/64k=-6 xbk
2) -7a · 3b · (-6c)=126 abc
3) 10m · (-1,7) n=-17 mn
4) 3,6 · (-5x)=-18 x
5) -3m · (-2,1)=6.3 m
6) -0,2t · (-5a) · (-b)=-1 tab
1) -1,25 · (-3,47) · (-8)=-1.25*(-8)*(-3.47)=10*(-3.47)=-34.7
2) -0,001 · (-54,8) · 50 · (-2)=-2*50*(-54.8)*(-0.001)=548*(-0.001)=-5.48
3) 9/16 · 11/35 · (-32) · (-70)=(9/16*(-32))*(11/35*(-70))=-18*(-22)=396
4) 4,8 · (-2 1/6) · (-5/24) · (-6/13)=((-2 1/6)*(-6/13))*(-5/24*4.8)=((-13/6)*(-6/13))*(-5/24*24/5)=1*(-1)=-1
1) 200m · (-0,4n)=-80mn=-80*(-0.25)*(0.2)= 4
2) -1/3m · (-3/4n) · 20p=5mnp=5*(-3/20)*4/9*(-30)=10