2
Пошаговое объяснение:
Предположим, что семиугольник только один. Тогда количество вершин у шестиугольников равно 40 − 7 = 33. Этого не может быть, потому что число 33 на 6 не делится.
Если семиугольников два, то количество вершин у шестиугольников равно 40 − 14 = 26, чего быть не может.
Если семиугольников три, то количество вершин у шестиугольников равно 40 − 21 = 19, чего быть не может.
Если семиугольников четыре, то количество вершин у шестиугольников равно 40 − 28 = 12. Значит, может быть 2 шестиугольника.
Больше четырёх семиугольников быть не может.
ответ: 2.
№ 443
Пусть в другой коробке х касет, тогда в одной х+12.
По условию задачи в двух коробка всего было 60 касет. Отсюда уравнение:
х+х+12=60
2х+12=60
2х=60-12
2х=48
х=48/2
х=24
Зная, что в другой коробке было 24 касет, тогда в одной было 24+12=36 касет.
ответ:24 касет, 36 касеты.
№623
Пусть с одной яблони собрали х кг яблок, тогда с другой х+19.
По условию задачи с обоих яблонь собрали 67 кг. Отсюда уравнение:
х+х+19=67
2х+19=67
2х=67-19
2х=48
х=48/2
х=24
Зная, что с одной яблони собрали 24 кг яблок, тогда с другой собрали 24+19=43 яблока.
ответ:24 кг, 43 кг.
№.645
1.271*49=13279
2.1001/13=77
3.77*24=1848
4.13279+1848=15127
16513,5 ≈ 17000
811,9 ≈ 1000