Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!
Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!
х²-10х+10=х²-2*х*5+5²-5²+10=(х-5)²-25+10=(х-5)²-15
2) =авс-а²+авс-в²+авс-с²=-(а²+в²+с²)+3авс=-1*0+3авс=0+3авс=3авс