Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
Одним из свойств простых чисел является утверждение, что множество простых чисел бесконечно (т. е. среди простых чисел нет наибольшего).Доказал это свойство простых чисел еще Евклид, используя метод от противного. Доказательство выглядит примерно так. Предположим, что множество простых чисел конечно, остальные числа являются составными. Найдем произведение всех существующих простых чисел и к этому результату добавим единицу. Понятно, что получившееся число больше любого из простых. Из предположения, что множество простых чисел конечно, следует, что получившееся число составное. Но если оно составное, то должно при разложении на множители содержать простые множители. Однако это не могут быть множители, которые использовались при образовании этого числа, т. к. к результату была добавлена 1, и, следовательно, произведение уже не делится нацело ни на одно из них (будет получаться остаток 1). Таким образом, приходим к выводу, что существуют иные простые числа, помимо использованных. Например, 2 * 3 * 5 * 7 + 1 = 211. Число 211 само является простым. 2 * 3 * 5 * 7 * 11 + 1= 2311. Число 2311 также простое. [ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем: 2 * 3 + 1 = 7, 2 * 3 * 5 + 1 = 31. Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается: 3 * 5 * 7 + 1 = 106 (составное) 2 * 5 * 7 + 1 = 71 (простое) 2 * 3 * 7 + 1 = 43 (простое) 3 * 5 * 7 * 11 + 1 = 1156 (составное) 3 * 11 * 13 + 1 = 430 (составное) 2 * 3 * 11 * 13 + 1 = 859 (простое) Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]
3 километра 300 метров.