М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rickieee
rickieee
27.08.2020 20:34 •  Математика

1) log2(3-2x)=2 2) lg^2 x+lgx-2=0 решите

👇
Ответ:
penkoania
penkoania
27.08.2020
1) 
2^2 = 3-2x
4-3=-2x
1=-2x
x = -1/2

2)
lgx = t
t^2 + t - 2 = 0
d = 1+8 = 9
t1 = (-1+3)/2 = 1        t2 = (-1-3)/2 = -2
lgx  = t1 = 1                lgx = t2 = -2
10 = x                         10 = x^(-2)
                                    10 = 1/ x^2
                                    10x^2 = 1
                                     x^2 = 1/10     
                                     x = √1/10
х≠0
ответ: х=10, x = √1/10, х≠0
4,4(68 оценок)
Открыть все ответы
Ответ:
Гавхарчик
Гавхарчик
27.08.2020

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,5(34 оценок)
Ответ:
sxxaaa
sxxaaa
27.08.2020

-1

Пошаговое объяснение:

p(a) = a(10 - a) / (a - 5)

это означает, что если а = 0

p(0) = 0 (10 - 0) / (0 - 5) = 0

или если а = 1

p(1) = 1 (10 - 1) / (1 - 5) = -9/4 = -2.55

теперь, скажем, что а = 10 - а

p(10 - a) = (10 - a) (10 - (10 - a)) / (10 - a - 5) = (10 - a) * a / (5 - a) =  a * (10 - a) / (5 - a)

посмотрим, что означает p(0) / p(1) =  0 / -2.55

по аналогии p(a) / p(10 - a) = (a(10 - a) / (a - 5)) / ( a * (10 - a) / (5 - a))  =

(a * (10 - a) * (5 - a)) / ((a - 5) * (10 - a) * a) = (5 - a) / (a - 5) = -1

4,6(14 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ