6 целых решений.
Пошаговое объяснение:
(x² + 6x)²≤49
(x² + 6x)² - 49 ≤ 0
(x²+6x -7)(x²+6x +7)≤0
Разложим на множители каждый из трёхчленов:
x² + 6x - 7 = (х + 7)(х - 1)
D = 36 + 28 = 64
x1 = -7
x2 = 1
x² + 6x + 7 = (х + 3 -√2)(х + 3 + √2)
D = 36 - 28 = 8
x1 = (-6 +2√2):2 = -3+√2,
x2 = (-6 -2√2):2 = -3-√2.
Получим
(х+7)(х-1)(х+3-√2)(х+3+√2) ≤0
Отмечаем на числовой прямой найденные корни трёхчленов, решаем неравенство методом интервалов.
+[-7]-[-3-√2]+[-3+√2]-[1]+>
х∈[-7; -3-√2]∪[-3+√2;1]
-7; -6; -5; -1; 0; 1 - целые решения неравенства.
116798
Пошаговое объяснение:
Ну смотри, здесь все просто.
Первое: Всегда выполняется действие в скобках.
Второе: Смотрим, есть ли умножение или деление в скобках (Не важно даже, скобки есть или нет. Всегда умножение или деление , выполняется первым)
Видим, что есть умножение, значит первым действием является 1289*9 = 11601
Третье: Продолжаем выполнять действие в скобках, после умножения идет вычитания 70000-11601 = 58399
Четвертое: Когда выполнили действие в скобках, переходим к последнему действию. 58399 * 2 = 116798
Два круга пересекаются и у них общая хорда АВ.
Один круг с центром О₁ и радиусом О₁А=О₁В=R₁.
Второй круг с центром О₂ и радиусом О₂А=О₂В=R₂.
Градусная мера дуги измеряется градусной мерой центрального угла.
Значит <АО₁В=60° и <АО₂В=120°.
Из ΔАО₁В по т.косинусов найдем АВ:
АВ²=R₁²+R₁²-2R₁*R₁*cos 60=2R₁²-2R₁²*1/2=R₁²
Аналогично из ΔАО₂В по т.косинусов найдем АВ:
АВ²=R₂²+R₂²-2R₂*R₂*cos 120=2R₁²-2R₁²*(-1/2)=3R₂².
Приравниваем R₁²=3R₂²
Площадь первого круга S₁=πR₁²=π*3R₂²
Площадь второго круга S₂=πR₂²
Отношение площадей S₁/S₂=π*3R₂²/πR₂²=3/1
ответ: 3:1
(x² + 6x)²≤49
(x² + 6x)²-49≤0
(x² + 6x)²-7²≤0 разность квадратов...дальше - на фото
ответ: 6 целых чисел являются решением данного неравенства