в пещере
Пошаговое объяснение:
По условию два гнома всегда говорят правду и сидят рядом , два всегда врут и тоже сидят рядом и два гнома , которые, могут врать и говорить правду, и сидят они не рядом. Логично предположить, что они сидят между правдивыми и лжецами. И друг напротив друга. Соответственно правдивые и лжецы тоже сидят друг против друга.Рассмотрим ответы гномов:
1 гном - в пещере.
2 — на дне озера.
3 — в замке.
4 — в сказочном лесу.
5 — на дне озера.
Два правдивых гнома сидят рядом, значит два ответа должны быть одинаковыми, но как видим такого нет. Значит правдивыми ответами могут быть первый и шестой или шестой и пятый.,Предположим, 5-й гном сказал правду. Тогда напротив него сидит 2-й гном, который должен соврать, а его ответ совпадает с ответом 5-го. , значит пятый гном не подходит. Остаются только первый и шестой. Отсюда правильный ответ – в пещере
Даны вершины треугольника АВС: А ( 1;6) В (-6;-4) С (-10;-1).
1) уравнение стороны АВ. Вектор АВ = (-6-1; -4-6) = (-7; -10).
Уравнение: (x - 1)/(-7) = (y - 6)/(-10) или 10x - 7y + 32 = 0 в общем виде.
2) уравнение высоты СН.
У перпендикуляра к прямой в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.
СН это перпендикуляр к стороне АВ.
Уравнение СН: 7x + 10y + С = 0. Для определения слагаемого С подставим координаты точки С(-10; -1).
7*(-10) + 10*(-1) + С = 0, отсюда С = 70 + 10 = 80.
Получаем 7x + 10y + 80 = 0
3) уравнение медианы АМ.
Находим координаты точки М как середины стороны ВС.
М = (В (-6;-4) + С (-10;-1))/2 = (-8; -2,5). Точка А ( 1; 6).
Вектор АМ = (-8-1; -2,5-6) = (-9; -8,5).
Уравнение АМ: (x - 1)/(-9) = (y - 6)/(-8.5).
Или в общем виде 17x - 18y + 91 = 0.
4) точку N пересечения медианы АМ и высоты СН
.Решаем как решение системы уравнений этих прямых:
{17x - 18y + 91 = 0| x7 = 119x - 126y + 637 = 0.
{7x + 10y + 80 = 0| x(-17) = -119x - 170y - 1360 = 0.
-296y - 723 = 0,
y = -723/296 ≈ -2,442568, x = (-80 -10*-2,442568)/7 ≈ -7,93919.
5)уравнение прямой проходящей через вершину С параллельно стороне АВ.
С || АВ: 10 x - 7 y + 93 = 0.
Коэффициенты А и В сохраняются, для определения слагаемого С подставляются координаты точки С.
6) расстояние от точки С до прямой АВ
CC₂ = 2S/АВ = 4,9973147.
Площадь треугольника ABC
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 30,5.
Расчет длин сторон:
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √149 ≈ 12,2066.