ЗАДАЧА 1.Отмерить 3 л, имея сосуд 5 л. Какое наименьшее число переливаний потребуется для того, чтобы в четырехлитровую кастрюлю с крана и пятилитровой банки налить 3 литра воды? Решение задачи 1.
Наливаем кастрюлю. Переливаем воду из кастрюли в банку. Наливаем кастрюлю. Доливаем полную банку, и в кастрюле остается 3 литра.
ЗАДАЧА 2.
Для приготовления компота маме нужно налить в 5-литровую кастрюли 4 литра воды. Как маме справиться с этой задачей, если у мамы есть кроме этой кастрюли ещё 3-литровая банка, водопроводный кран и раковина, куда можно выливать воду?
Решение к задаче 2.
Нальём в 3-литровую банку воду и перельём её в кастрюлю. Затем еще раз наполним банку и выльём в кастрюлю, сколько поместится. Тогда в кастрюле будет 5 литров и 1 литр в 3-литровой банке. Теперь выльем всю воду из кастрюли в раковину. Затем перельем литр из банки в кастрюлю и добавим ещё три литра, наполнив банку ещё раз. Теперь в кастрюле 1 + 3 = 4 литра, что и требовалось. Задача решена.
ответ : длина стороны квадрата больше 5 см и меньше 7 см .
2) Периметр- сумма длин сторон фигуры. Квадрат- частный случай параллелограмма, в котором все стороны равны. Записываем это в буквах: P=a+a+a+a=4a Теперь записываем условие задания в виде двойного неравенства, можно разбить его на 2 неравенства, но и двойное неравенство не так уж и сложно. 20<P<28 20<4a<28 Видим, что в неравенстве заключена сторона квадрата умноженная на 4. Во-вторых, по свойству неравенства мы имеем право умножать и делить последовательно все члены в неравенстве. Поделим все неравенство на 4: 5<а<7
ответ: а принадлежит промежутку от 5 до 7 не включая концов.
(1,7+10х):3=2; 1,7+10х=2*3=6, 10х=6-1,7=4,3, х=4,3/10=0,43
(15,8-10х):4=3; 15,8-10х=3*4=12, 10х=15,8-12=3,8, х=3,8/10=0,38
(16,3-100х):2=5; 16,3-100х=5*2=10, 100х=16,3-10=6,3, х=0,063
(100х+4,6):5=3, 100х+4,6=3*5=15, 100х=15-4,6=10,4, х=10,4/100=0,104