По условию среднее арифметическое двух чисел равно 6,5, тогда сумма этих двух чисел равна 13. Пусть меньшее из чисел равно х, тогда большее будет равным (13 - х), их среднее геометрическое равно √(х•(13-х)).
По условию среднее геометрическое этих чисел равно 12/13 их среднего арифметического, тогда
Верные утверждения: 1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны. По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ: 2) Любые два прямоугольных треугольника подобны. НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника. НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту. НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
1)Скільки в 3 корзині? 60-38=22 (кг) 2)Скільки в 1 корзині? 60-40=20 (кг) 3)Скільки в 2 корзині? 60-22-20=18 (кг) Відповидь:18 кг в 2 корзині з яблуками Та можно ще й вираз: 60-22-20=Або 60-(60-38)+(60-40)=18 кг
4 и 9.
Пошаговое объяснение:
По условию среднее арифметическое двух чисел равно 6,5, тогда сумма этих двух чисел равна 13. Пусть меньшее из чисел равно х, тогда большее будет равным (13 - х), их среднее геометрическое равно √(х•(13-х)).
По условию среднее геометрическое этих чисел равно 12/13 их среднего арифметического, тогда
√(х•(13-х)) = 12/13•6,5
√(х•(13-х)) = 12/13 • 13/2
√(х•(13-х)) = 6
х•(13-х) = 36
-х^2 + 13х - 36 = 0
х^2 - 13х + 36 = 0
х1 = 4
х2 = 9 не подходит по условию.
4 - меньшее положительное число;
13 - 4 = 9 - большее положительное число.
Проверим полученный результат:
Среднее геометрическое √(4•9) = 6.
6 = 12/13•6,5
6 = 6, верно.