Пошаговое объяснение:
Ход решения задачи.
1.
Провести через вершину меншего основания прямую, паралельную боковой стороне трапеции.
Получим на основании 2 отрезка, один из которых равен 2, другой - 1см( равный меньшему основанию)
2.
Обозначить отрезок между основанием высоты и большим углом у основания х
Составить 2 выражения для нахождения высоты трапеции (из того же угла), для чего опустить эту высоту на большее основание и приравнять их.
Получим
h²=()²-х²
h²=4² - (2-х)²
(2√3)²-х²=4² - (2-х)²
Решив это уравнение. найдем, что х=0.
Отсюда эта трапеция - прямоугольная, и углы при меньшей боковой стороне - прямые.
h=2√3
Косинус нужного угла =2:4=0,5
Найдите угол по таблице косинусов.
Этот угол равен 60º.
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Количество мальчиков сидящих с девочками – такое же! И эти мальчики составляют только треть от всех мальчиков, а значит, число всех мальчиков втрое больше парт, за которыми девочки сидят с мальчиками.
Класс состоит только из мальчиков и девочек! А значит, всего в классе в пять (2+3) раз больше учеников, чем количества парт, за которыми девочки сидят с мальчиками.
В классе 20 учеников, и это в пять раз больше парт, за которыми девочки сидят с мальчиками. А значит, в классе 4 парты, за которыми девочки сидят с мальчиками, поскольку 20 в пять раз больше четырёх.
Число всех мальчиков втрое больше парт, за которыми девочки сидят с мальчиками, т.е. всего в классе 12 мальчиков, поскольку 12 втрое больше чем 4.
О т в е т : (Б) 12 .