8: 2=4 10: 5=2 12: 2=6 14: 2=7 17-простое число(делится только на 17)
4: 2=2 2: 2=1 6: 2=3 7: 7=1 18: 2=9
2: 2=1 3: 3=1 9: 3=3
3: 3=1
20: 2=10 25: 5=5 27: 3=9 31-простое число(делится только на 31)
10: 2=5 5: 5=1 9: 3=3
5: 5=1 3: 3=1
ответ: (e-1)/3
Пошаговое объяснение:
Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть
, тогда
.
![du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}](/tpl/images/1117/5039/82eee.png)
Делаем подстановку в наше изначальное выражение:
![\int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }](/tpl/images/1117/5039/640b8.png)
Здесь
сокращаются и мы имеем
. Выносим
за интеграл:
. Теперь мы имеем знакомый интеграл, который равняется
, тоже самое что
. Подставляем
и имеем
. Используем фундаментальную теорему исчисления:
![\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}](/tpl/images/1117/5039/3089c.png)
относительно пешехода равна 11-5=6 км в час
а расстояние между ними 24км
значит время равно 24/6=4