Кладовщик выдал по первому ордеру 2/7 всей имевшейся на складе проволке,а по втторому ордеру 3/14 всей проволки. сколько килограммов проволки было на складе,если по первому ордеру было выдано на 25 кг больше,чем по второму?
Сначала найдём касательную к графику используя уравнение касательной: y=f(x₀)+f'(x₀)(x-x₀) для этого найдём производную функции f(x)=-x²+3 f'(x)=(-x²+3)'=-2x и значение производной в точке x₀=1 f'(1)=-2*1=-2. Значение функции в точке x₀=1 f(1)=-1+3=2 Теперь можно составить уравнение касательной y=2-2(x-1)=2-2x+2=-2x+4 Начертим рисунок. По рисунку видим, что фигура ограничена сверху прямой y=-2x+4, снизу параболой y=-x²+3, слева прямой х=0 и лежит на интервале [0;1]. Так как функция y=-2x+4 больше функции y=-x²+3 на интервале [0;1], то формула вычисления площади фигуры будет выглядеть следующим образом: ед²
Из площади квадрата Q его сторона - √Q. Так как S=a²=>a=√S При вращении квадрата вокруг стороны получается цилиндр с высотой равной стороне квадрата и кругами в основании с радиусами равными опять же стороне квадрата. Площадь основания будет равна пи*R^2=Q*пи. Боковой стороне получим развертку -прямоугольник со стороной - 2пи*R и высота боковой стороны равна √Q, тогда боковая площадь равна 2пи*√Q*√Q=6,28Q =2pi*Q. Площадь искомый (цилиндра) складываем 2 площади основания и боковой =>S'=Q*пи+2pi*Q.=3pi*Q.
Сначала приведем к общему знаменателю:
2/7 = 4/14
4/14 - 3/14 = 1/14 на столько больше было выдано по первому ордеру, и именно эта часть составляет 25 кг.
значит всего было проволоки 25 * 14 = 350 (кг)