Как исследовать функцию f(x) = (x^2-9)/(x+3) на непрерывность в точке x=7? Найти предел в этой точке f(7)= (7²-9)/(7+3)=40/10=4 lim (x²-9)/(x+3)= lim (x²-9)/(x+3)= f(7)=4 x→7+0………… x→7-0 ФУНКЦИЯ В ТОЧКЕ х=7 НЕПРЕРЫВНА, т. к. односторонние пределы равны значению функции в точке! Для души и сравнения х=-3 f(-3)= ((-3)²-9)/(-3+3)=0/0=не существует lim (x²-9)/(x+3)= lim (х-3)(х+3)/(x+3) )= lim (х-3)=-6 x→-3+0………… x→-3+0………………. x→-3+0 lim (x²-9)/(x+3)= lim (х-3)=-6 x→-3-0……….. x→-3-0 х=-3 точка разрыва 1-го рода, разрыв устранимый, ( есть не устранимый разрыв, если пределы конечны, но не равны) т. к. односторонние пределы конечны и равны! У данной функции нет точек разрыва 2- рода, например 1/х, при х=0, односторонние пределы равны ±∞, Удачи!
X- ст. страниц во второй книге. 3х-в ст. страниц больше в первой чем во второй. 5+х-на ст. страниц больше в тререй чем во второй. х+3х+5+х=125 5х+5=125 5х=125-5 5х=120 х=120/5 х=24стр.-ст стрн. во 2 книге. 3х=3.24=72стр.-ст. стран. в первой книге. 5+х=5+24=29стр.-ст. стран. в третей книге. Провер. 24+72+29=125страниц.