O - точка пересечения биссектрисы AL и медианы BM треугольники AOM и AOB равны по стороне и 2-м прилеж.к ней углам (AO общая, углы равны, т.к. AL биссектриса и треуг.прямоугольные по условию) => AB=AM треуг.MAB равнобедренный => биссектриса AO и медиана => MO=OB треуг.MOL и LOB равны по 2-м сторонам и углу между ними (OL общая и углы прямые) => ML=LB AC=BC т.к. треуг.ABC равнобедренный, AM=MC, т.к. BM медиана периметр ABC = AB+2AC = AM+2*2AM = 5AM периметр LMC=99=MC+CL+LM = AM+BC-BL+LM = AM+BC = AM+2AM = 3AM AM = 99/3 = 33 периметр ABC = 5*33 = 165
1. Интервал знака постоянства. Производная равна: Приравняем её нулю: 1 = 4√х. 1 = 16х, х = 1/16. Критическая точка одна. х = 0.05 0.0625 0.1 y'=(1/(2x^(1/2))-2 0.23607 0 -0.41886. Где производная положительна - там функция возрастает, где производная отрицательна - там функция убывает. Убывает на промежутке (-oo, 1/16], возрастает на промежутке [1/16, oo) 2. Точка максимума. По пункту 1: где производная меняет знак с + на - , там максимум функции - это точка х = 1/16, у = 1/8. 3. Интервал выпуклости. Находим вторую производную: Переменная в знаменателе не может быть равна нулю - перегиба у функции нет. Вторая производная только отрицательна (корень из квадрата) - график функции только выпуклый вверх. 4. Какие Асимптоты имеет график. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo limx→−∞(x√−2x)=∞limx→−∞(x−2x)=∞значит, горизонтальной асимптоты слева не существует. limx→∞(x√−2x)=−∞limx→∞(x−2x)=−∞значит, горизонтальной асимптоты справа не существует.
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(x) - 2*x, делённой на x при x->+oo и x ->-oo limx→−∞(1x(x√−2x))=−2limx→−∞(1x(x−2x))=−2значит, уравнение наклонной асимптоты слева: y=−2xy=−2x,
700/1.3834≈505.9≈506