Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
Весь путь ледокола = 1 (целое) 1/2 = 0,5 в десятичных дробях 3/5 это 0.6 1 день - 0,5 пути 2 день - 0,6 * (1 - 0,5) 3 день - 24 км
1) 1 - 0,5 = 0,5 - оставшийся путь; 2) 0,6 * 0,5 = 0,3 пути во второй день 3) 1 - (0,5 + 0,3) = 1 - 0,8 = 0,2 пути в третий день 0,2 пути = 24 км. Находим целое по его части 24 : 0,2 = 120 (км) - длина пути, пройденного ледоколом за три дня ответ: 120 км.
Проверка: 1) 120 * 0,5 = 60 (км) - в первый день 2) 0,6 * (120 - 60) = 0,6 * 60 = 36 (км) - во второй день 3) 60 + 36 + 24 = 120 (км) - весь путь за три дня.