Пусть первая труба заполняет резервуар за Х минут. Значит ее производительность (работа за единицу времени) равна 1/Х. Вторая труба заполняет резервуар за Y минут. ЕЕ производительность равна 1/Y. Нам дано: 1/Х+1/Y=1/45 и Х-Y=48. Решаем систему двух уравнений. Х=48+Y. Подставляем это значение в первое уравнение и получаем: 1/(48+Y)+1/Y=1/45, отсюда 45Y+45(48+Y)=48Y+Y². Или Y²-42Y-2160=0. Корни этого квадратного уравнения равны: Y1=21+√(441+2160)=21+51=72 Y2=21-51=-30 - не удовлетворяет решению. ответ: вторая труба, работая в одиночку, заполнит резервуар за 72 минуты.
Проверка: первая труба заполняет трубу за 72+48=120 минут. Тогда обе трубы вместе заполнят бассейн за 1/(1/120+1/72)=1/(1/45)=45 минут.
F(x)=2^(1/(x-6)) Ф-ція f(x) є неперервною в т. х_0, якщо lim_(x->x_0) f(x) = f(x_0) lim_(x->6) 2^(1/(x-6)) lim_(x->6-) 2^(1/(x-6)) = 1 (зліва) lim_(x->6+) 2^(1/(x-6)) = неск (зправа) В т. х_0=6 - розрив ф-ції - тобто вона не є неперервною.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6) f(0)=1/2^(1/6) Ф-ція є неперевною в т.х_0=0