определение. линейным уравнением с двумя переменными называется уравнение вида
mx + ny = k, где m, n, k – числа, x, y – переменные.
пример: 5x+2y=10
определение. решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.
1. 5x+2y=12 (2)y = -2.5x+6
данное уравнение может иметь сколько угодно решений. для этого достаточно взять любое значение x и найти соответствующее ему значение y.
пусть x = 2, y = -2.5•2+6 = 1
x = 4, y = -2.5•4+6 =- 4
пары чисел (2; 1); (4; -4) – решения уравнения (1).
данное уравнение имеет бесконечно много решений.
5. ∠2 = 52°
6. 45° - 1-й угол 135° - 2-й угол
7. 113° и 67°
8. 86° - каждый из двух острых углов
Пошаговое объяснение:
Сумма двух смежных углов = 180°
5. ∠1 = 128° ∠2 = 180° - 128° = 52°
6. Пусть х° первый угол, тогда 3х° - второй угол (в 3 раза больше)
х° + 3х° = 4х° - сумма двух смежных углов, что равно 180°
4х = 180 х = 180/4 х = 45° - 1-й угол 45*3 = 135° - 2-й угол
7. Пусть y° - меньший угол, x° - больший угол
Сумма смежных углов 180° и разность углов 46°, составим и решим систему уравнений:
{x + y = 180° → сложим левые и правые части уравнений:
{x - y = 46°
х+х+у-у= 180+46
2x = 226°
х = 113° - больший угол
y = 180°- 113°
y = 67° - меньший угол
113 - 67 = 46° - разность смежных углов
8. При пересечении 2 прямых, образуются 4 вертикальных угла (а, b, с, d), противоположные из них равны между собой (∠а = ∠с; ∠b = ∠d)
Пусть ∠а = 94°, т.к. ∠а = ∠с, то ∠с = 94°
Сумма всех 4-х вертикальных углов = 360°
360° - (94°*2) = 172°- сумма ∠b и ∠d
172° : 2 = 86° - ∠b и ∠d
х=240*3=540-360
х=240*3=180
х=240=180:3
х=240=60
х=240:70
х=4
876+у+9869=78000
876+у=78000-9869
876+у=68131
у=68131-876
у=67255