Для того чтобы перевести число необходимо разделить с остатком числитель на знаменатель т. е. узнать сколько "целых" раз содержится. И это неполное частное и будет целой частью. Затем остаток (если он есть) дает числитель, а делитель - знаменатель дробной части (чтобы было понятнее нужно знаменатель умножить на целое число, которое ты получила ранее, а затем из ЧИСЛИТЕЛЯ вычесть то что ты сейчас получила) Например: 136/28=4 целых 24/28, это сократимая дробь = 4 целых 6/7 Я 136 разделила на 28 и получила 4. Затем чтобы узнать числитель, умножила 28 на 4 получилось 112, и из 136 вычла 112. Для сокращения нужно и числитель и знаменатель разделить на одно и тоже число (в данном случае это 4)
Задание 1. Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз). На последнем месте могут стоять цифры 2 или 4 (так как числа четные). Рассмотрим оба этих случая: Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка). Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6. Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).
Аналогично в случае, когда на последнем месте цифра 4. Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.
Задание 2. Последняя цифра - 1 или 3. Рассмотрим оба варианта.
Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен. Всего возможных вариантов:
Это числа 231, 321, 241, 421, 341, 431.
Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6. Это числа 123, 213, 143, 413, 243, 423
а) -0.85a+0.7b-2.1a+1a-o.65b= (-0.85-2.1+1)a+(0.7-0.65)b= -1.95a+0.05b
б) 2x - 1/2y-4/5x+2.1y= (2-4/5)x+(-1/2+2.1)y= 1.2x +1.6y