Приведем данную гиперболу к каноническому виду: 2x^2-9y^2=18 x^2/9-y^2/2=1 x^2/3^2-y^2/(sqrt(2))^2=1 (примечание: sqrt - квадратный корень) Найдем вершины гиперболы: y=0 x^2/9=1 x^2=9 x1=3 x2=-3 точки (-3;0) и (3;0) - вершины гиперболы Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4): уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности) центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4): x^2+(y+4)^2=R^2 По теореме Пифагора найдем радиус окружности: R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5
Пусть х - скорость грузовика. Тогда х + 30 - скорость легковой машины.. х + х + 30 - скорость сближения
1) 288:2 = 144 км - была бы скорость сближения, если бы автомобили встретились через 2 часа, но их скорость сближения оказалась меньше. х + х + 30 < 288/2 2х + 30 < 144 2х < 144-30 2х < 114 х < 114:2 х < 57 км/ч - скорость грузовика.
2) 288:3 = 96 км/ч была бы скорость удаления автомобилей друг от друга. х + х + 30 > 288/3 2х + 30 > 96 2х > 96-30 2х > 66 х > 33 км/ч - скорость грузовика.
ответ:(10;5)