М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
малина106
малина106
04.08.2022 12:45 •  Математика

1)39*: 14=*8 2)8*8: 23=3* 3)*37: 49=1* 4)*62: 37=2* . вставте правельные числа

👇
Ответ:
leryn1999
leryn1999
04.08.2022
392/14=28
637/49=13
962/37=26
4,6(29 оценок)
Открыть все ответы
Ответ:
мозг302
мозг302
04.08.2022

ответ: х=121 х=дробь 11

                                     

                                       19

Пошаговое объяснение:

0.6(х-2)+4.6=0.4(7+х)

0.6х-1.2+4.6=2.8+0.4х

0.6х-0.4х=2.8+1.2-4.6

0.2х=24.2

х=121

2(5-х)=9(х-1)

10-2х=9х-9

10+9=9х+2х

19=11х

11х=19

х=11

    -

     19

Пусть х л воды было в каждой цистерне первоначально, тогда

(х-54) л воды стало в первой цистерне, а 

(х-6) л воды стало во второй цистерне.

Т.К. в первой стало в 4 раза меньше, чем во второй, то составим уравнение: 4(х-54)=х-6,  4х-216-х+6+0;  3х=210;  х=70

ответ: в цистернах было по 70 л воды

4,8(60 оценок)
Ответ:
помоги270
помоги270
04.08.2022

ответ:

отложим одну монету, а на каждую чашу весов положим по две монеты. возможны два случая.  

  1) весы в равновесии. так как четырёх настоящих монет нет, то на одной чаше лежат обе фальшивые монеты. следующим взвешиванием достаточно сравнить веса монет с одной чаши: если весы в равновесии, то эти монеты настоящие, и фальшивые монеты в другой чаше; если весы не в равновесии, то фальшивые монеты – на весах.

  2) одна из чаш перевесила. тогда на весах находится или только лёгкая фальшивая монета в более лёгкой чаше или только тяжёлая фальшивая монета в более тяжёлой чаше, или обе монеты находятся в разных чашах. вторым взвешиванием сравним веса монет в лёгкой чаше: если весы не в равновесии, то более лёгкая монета – фальшивая. если весы в равновесии, то отложенная монета – фальшивая (и она лёгкая). аналогично, третьим взвешиванием сравним веса монет из тяжёлой чаши: тогда, либо более тяжёлая монета – фальшивая, либо, если весы в равновесии, отложенная монета фальшивая (и она тяжёлая).

решение 2

  первый раз положим на чаши весов первую и вторую монеты, а второй раз – третью и четвёртую. возможны только два случая.  

  1) один раз весы были в равновесии (пусть при первом взвешивании; при этом на чашах настоящие монеты), а другой раз – нет.  

  возьмем настоящую монету из первого взвешивания и сравним её с той, что оставалась на столе. если их веса равны, то последняя монета настоящая, а фальшивые – те, что участвовали во втором взвешивании. иначе, монета со стола – фальшивая, и мы знаем, легче она настоящей или тяжелее, а потому знаем, лёгкая или тяжёлая фальшивая монета участвовала во втором взвешивании.

  2) оба раза весы были не в равновесии. тогда на весах каждый раз была одна фальшивая монета, а на столе осталась настоящая. взвесим её с лёгкой монетой из первого взвешивания. если веса равны, то в первом взвешивании фальшивой была более тяжёлая, а во втором – более лёгкая. если же более лёгкая монета из первого взвешивания оказалась легче, то она фальшивая, а из второго взвешивания фальшивая – более тяжёлая.

замечания

отметим, что решение 2 не использует то, что обе фальшивых монеты весят столько же, сколько две настоящих.

4,8(5 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ