Отрезки касательных, проведенных к окружности из одной точки, равны... (((центр вписанной в угол окружности лежит на биссектрисе...))) боковая сторона АВ с продолжением будет касательной к обеим окружностям. если провести радиусы обеих окружностей к АВ, то получится прямоугольная трапеция с основаниями-радиусами высотой, равной 8+8 (тк. отрезки касательных равны...))) и второй боковой стороной, равной 12+r а дальше т.Пифагора: (12+r)^2 = 16^2 + (12-r)^2 (12+r)^2 - (12-r)^2 = 16^2 (12+r - (12-r))*(12+r + 12-r) = 16^2 2r * 24 = 16*16 r = 16/3 = 5 целых 1/3
Отрезки касательных, проведенных к окружности из одной точки, равны... (((центр вписанной в угол окружности лежит на биссектрисе...))) боковая сторона АВ с продолжением будет касательной к обеим окружностям. если провести радиусы обеих окружностей к АВ, то получится прямоугольная трапеция с основаниями-радиусами высотой, равной 8+8 (тк. отрезки касательных равны...))) и второй боковой стороной, равной 12+r а дальше т.Пифагора: (12+r)^2 = 16^2 + (12-r)^2 (12+r)^2 - (12-r)^2 = 16^2 (12+r - (12-r))*(12+r + 12-r) = 16^2 2r * 24 = 16*16 r = 16/3 = 5 целых 1/3
По условию задачи сумма 3-х чисел равно 820.
Получаем уравнение:
хх+7х+(7х+55)=820
15х=765
х=765:15
х=51
51-третье число.
7*51=357-первое число
357+55=412-второе число
ответ: 357,412,51.