Через две параллельные прямые можно провести плоскость, и притом только одну. (теорема).
Точки А, А1, В и В1 лежат в плоскости АВВ1А1. Эта плоскость пересекает параллельные плоскости α и β.
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Следовательно, АВ|║А1В1, и четырёхугольник АВВ1А1, противоположные стороны которого параллельны - параллелограмм.
В параллелограмме противоположные стороны равны.
А1А:АВ=1:3.⇒ АА1=АВ:3=9:3=3
Р (АВВ1А1=2(А1А+АВ)=2•(3+9)=24 см.
1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.