Zadanie 4 (Задание 4)
Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.
n=1 => дерево состоит из одной вершины степени 0.
n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.
Тогда будем достраивать дерево из цепи. Ребро - простая цепь.
Алгоритм:
Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.
Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.
Если же число вершин < n, добавляем ребро.
На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.
На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .
Zadanie 5 (Задание 5)
Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство
Введем обозначения
Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство . Просуммировав неравенства для каждой из k компонент, получим
.
Оценка снизу получена.
Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть – компоненты связности,
. Тогда при "переносе" одной вершины из
в
число ребер увеличится на
– а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно
Оценка сверху получена.
Zadanie 6 (Задание 6)
Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ
Решение в приложении к ответу
см. рис.
Пошаговое объяснение:
кубическая парабола, снизу-вверх.
Взять производную,
исследовать f'(x) на f'(x) < 0, f'(x) > 0
определить экстремумы.
f'(x) = 3x² - 5x - 2
f'(x) = 0 при
3x² - 5x - 2 = 0
D = 25 - 4 * 3 * (-2) = 49 - 7²
x1 = (5-7) / 6 = -1/3
x2 = (5+7) / 6 = 2
f'(x) = 3x² - 5x - 2 (роги вверх => меньше нуля - между корнями)
f'(x) < 0 при x ∈ (-1/3; 2) => f(x) убывает
f'(x) > 0 при x ∈ (-∞; -1/3) ∪ (2; +∞) => f(x) возрастает
х1 - точка максимума
х2 -точка минимума
f(-1/3) = (-1/27) - (5/2)*1/9 - 2*(-1/3) + 3/2 = -1/27 - 5/18 + 2/3 + 3/2 =
= -1/27 + (-5 + 12 +27)/18 = -1/(9*3) + 34/(9*2) = (-2+102) / (9*3*2) =
= 100/54 = (почти 2)
f(2) = 8 - 10 - 4 + 3/2 = -4,5
f(0) = 3/2
дальше строим график, если руками - то считаем точки и соединяем плавной кривой.
примерно представив график можно проверить нули функции:
f(-1) = 0
f(1/2) = 0
f(3) = 0
3 3/4:2,5=15/4:25/10=15/4*10/25=15/10=1,5
1/7:2,5=1/7*10/25=10/175=2/35