ответ:
пошаговое объяснение:
сначала построим график f(x)=2x+3.4
а теперь подумаем, что будет при взятии целой части числа.
вот, допустим, f(x)=1 без взятия целой части, при , тогда при любом , но при взятии целой части будет 1. далее, при некотором , f(x)=2.
но при любом
при идет прямая, в точка не выколота, а вот в где f(x)=1 выколота, а вот где f(x)=2 не выколота.
и так далее.
при f(x)< 0 все симметрично наоборот
на рисунке я постарался отметить все, что нужно. синяя прямая - исходная прямая графика y=2x+3.4, а вот черные кусочки - нужный график вместо с выколотыми точками.
пунктирами, по факту, отмечены разрывы функции. это перпендикуляры
Событие A = {будет хотя бы один аудитор высокой квалификации}
Событие B = {будет хотя бы один программист высокой квалификации}
P(A) = 1 − P(¬A), где ¬A — не будет ни одного аудитора высокой квалификации
P(B) = 1 − P(¬B), где ¬B — не будет ни одного программиста высокой квалификации
То есть:
P(A) = 1 − (5/8)·(4/7)·(3/6) = 23/28
P(B) = 1 − (3/5)·(2/4) = 7/10
Тогда:
P(C) = {будет хотя бы один аудитор высокой квалификации и хотя бы один программист высокой квалификации} =
= P(A)·P(B) = (23/28)·(7/10) = 23/40 ≈ 0,575
ответ: 0,575
Можно решать по-другому:
P = m/n, где
m = m₁ · m₂
m₁ = C¹₃ · C²₅ + C²₃ · C¹₅ + C³₃ = 46
m₂ = C¹₂ · C¹₃ + C²₂ = 7
m = 46·7 = 322
n = C³₈ · C²₅ = 560
P = m/n = 322 / 560 = 23/40 = 0,575
ответ: 0,575
Пошаговое объяснение:
а все остальное неверно