Рассмотрим событие А - из наугад выбранной урны будет извлечён белый шар. Это может произойти в результате следующих предположений: B₁ - будет выбрана 1-я урна В₂ - будет выбрана 2-я урна В₃ - будет выбрана 3-я урна Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна P(B₁)=P(B₂)=P(B₃)=1/3 Далее. В первой урне 3 белых шара + 1 чёрный = 4 шара. Вероятность извлечения белого шара, если будет выбрана первая урна P₁=3/4 Во второй урне 6 белых + 4 черных = 10 шаров. Вероятность извлечения белого шара, если будет выбрана вторя урна P₂=6/10=3/5 В третьей урне 9 белых + 1 чёрный = 10 шаров. Вероятность извлечения белого шара, если будет выбрана третья урна Р₃=9/10 По формуле полной вероятности Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10= =1/4+1/5+3/10=3/4
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.