Умоляю дан прямоугольник абсд, у которого аб=8 см, ад=20 см. найдите площадь четырёхугольника, полученного при пересечении биссектрис всех углов прямоугольника.
17²=289; 18²=324; 6³=216; 7³=343. Кубы и квадраты совпадают, когда они являются шестыми степенями. В нашем диапазоне это 1 и 64. Квадратов, меньших 300, 17 штук; кубов, меньших 300, 6 штук, но два из них являются также квадратами. Поэтому из чисел, меньших 300, было вычеркнуто 17+6-2=21 число. Из вычеркнутых чисел, больших 300, которые могли повлиять на ответ, ближе всего стоит 324, но оно влияет на места чисел, больших 324. Поэтому остальные квадраты и кубы можно не учитывать. Поэтому на 300-м месте будет стоять число, ранее стоявшее на 321-м месте.
Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см