Нужно найти тот пример, в котором если подставить любое удобное число и 0 в место х (я же использую 1, -1 и 0, но не всегда - поймете почему в объяснение) , то будет НЕ правильно и работает это методом вычисления и ИНОГДА (если трудно или подобное) метод исключения
1. х^2+6x+12>0
Подставляем:
х=1
1)1*1+6*1+12>0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12>0 - 1+(-6)+12=7 7>0
3)0*0+6*0+12>0 - 0+0+12=12 12>0
Проверка: (не требует)
x=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство имеет решение при любом значении х
2. х^2+6x+12<0
Подставляем:
х=1
1)1*1+6*1+12<0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12<0 - 1+(-6)+12=7 - 7>0
3)0*0+6*0+12<0 - 0+0+12=12 - 12>0
Проверка:
х=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство НЕ имеет решение при любом значении х
3. х^2+6x-12<0
х=1
Подставляем:
1)1^2+6*1-12<0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12<0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12<0 - 0*0+0-12=(-12) - -12<0
Проверка: (не требует)
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
4. х^2+6x-12>0
х=1
Подставляем:
1)1^2+6*1-12>0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12>0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12>0 - 0*0+0-12=(-12) - -12<0
Проверка:
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
Задача легкая и ее можно запросто решить в уме. Глевное знать как (и делать провеку)
по звезд ибо делал 2 с лишним часа
D(f) - область определения функции, т.е. все значения, которые можно подставить в функцию и получить что-то осмысленное. Если есть "просто" функция, про смысл которой ничего не известно, то обычно надо просто учесть некоторые правила:
- если есть дроби, знаменатели не должны обращаться в ноль
- если есть корни чётных степеней, подкоренные выражения должны быть неотрицательны
- основание логарифма должно быть положительным и не равным нулю, логарифмируемое выражение должно быть положительно
- аргументы arcsin, arccos изменяются от -1 до 1
- tg не определен в точках вида pi/2 + pi*n, ctg не определен в точках вида pi*n, n - произвольное целое число
и другие.
Если про функцию известно, какой смысл несут аргументы и значение функции, ограничения могут добавиться. Например, если функция вычисляет размер ежемесячного платежа по кредиту в зависимости от продолжительности кредита (в днях), то аргумент (дни) должен быть положителен, а чаще всего представляться натуральным числом.
E(f) - область значений функции, то есть все значения, которые получаются при подстановке всевозможных аргументов в функцию. Её определить, как правило, сложнее. Тут тоже можно запомнить некоторые правила, однако к ним есть куча оговорок:
- Многочлены нечётных степеней, определенные на R (множестве действительных чисел), имеют область значений R
- Корни чётных степеней, определенные на [0, ∞) принимают значения из [0, ∞)
- Корни нечетных степеней R → R (Это еще один записать D(f), E(f). Перед стрелкой пишется D(f), после - E(f))
- sin, cos: отрезок длины 2π → [-1, 1]
- log: (0, ∞) → R
В общем случае нахождение E(f) - непростая задача. В её решении может график функции. Все "игреки" будут в множестве E(f).
Как и для D(f), наличие знания о смысле принимаемых значений также может накладывать дополнительные условия. Например, в уже рассмотренном случае о размере выплаты по кредиту размер выплаты должен быть неотрицательной величиной: ситуация, при которой банк платит за ваше пользование кредитом в настоящее время нереалистична (однако иногда наступают случаи, когда такое бывает)
Пошаговое объяснение:
120*3/12=30 (ш.) - красные
120-30=90 (ш.)-оставшиеся
90*3/5=54 (ш.)-синие