ответ: 36 делителей (18 - положительных и 18 отрицательных): ±1, ±2, ±3, ±4, ±5, ±6, ±10, ±12, ±15, ±20, ±25, ±30, ±50, ±60, ±75, ±100, ±150; ±300.
Пошаговое объяснение:
1. Разложение на простые множители:
300|2
150|2
75|3
25|5
5|5
1
Каноническое разложение: 300=2²*5²*3
Поскольку имеется 3, различных по значению множителя, все натуральные делители числа 300 можно записать формулой:
d=2^t₁ * 5^t₂ * 3^t₃, где t может принимать значения 0, 1, 2:
t₁=0; 1; 2
t₂=0; 1; 2
t₃=0; 1
Сейчас можно найти, сколько натуральных делителей имеет число 300, найдя произведение возможных вариантов t:
t₁ - может принимать 3 значения (0, 1, 2),
t₂ - 3 значения (0, 1, 2),
t₃ - 2 значения (0, 1),
3*3*2=18 - всего 18 натуральных делителей имеет число 300
Нахождение делителей:
1) 2⁰*5⁰*3⁰=1
2) 2⁰*5⁰*3¹=3
3) 2⁰*5¹*3⁰=5
4) 2⁰*5¹*3¹=15
5) 2⁰*5²*3⁰=25
6) 2⁰*5²3¹=75
7) 2¹*5⁰*3⁰=2
8) 2¹*5⁰*3¹=6
9) 2¹*5¹*3⁰=10
10) 2¹*5¹*3¹=30
11) 2¹*5²*3⁰=50
12) 2¹*5²*3¹=150
13) 2²*5⁰*3⁰=4
14) 2²*5⁰*3¹=12
15) 2²*5¹*3⁰=20
16) 2²*5¹*3¹=60
17) 2²*5²*3⁰=100
18) 2²*5²*3¹=300
ответ: получено 18 натуральных (роложительные) делителей, поскольку, в задании требуется найти все делители, то отрицательных делителей тоже 18: 18+18=36
разберём двузначные числа.каждое двузначное число может быть представлено как (10х + y). итак, мы имеем число "xy". после указанных действий получается 10x + y + x + y = 11x + 2y. x = [1,, y = [0,подставляя различные числа, мы не получаем двух различных пар x и y, которые при подставлении их значений выдавали бы одну и ту же сумму. чтобы в этом убедиться, достаточно взять крайние значения: x=1 и y=0 : 11x=1 и y=9 : 29 а такжеx=3 и y=0 : 33эта разница в 4 будет присутствовать всегда при x=2n+1 (где n - целые числа). в случае с x=2n совпадения с сочетаниями x=2n+1 не будет, так как при перемножении четного с нечетным (11) получается четное число, ну а 2y всегда будет четным (сумма с ним даст четное только при четном 11x).следовательно, для двузначных чисел это неосуществимо.