48 = 2 * 2 * 2 * 2 * 3 84 = 2 * 2 * 3 * 7
НОД (48 и 84) = 2 * 2 * 3 = 12 - наибольший общий делитель;
16 = 2 * 2 * 2 * 2 45 = 3 * 3 * 5
НОД (16 и 45) = 1 - числа 16 и 45 взаимно простые, так как у них нет общих простых множителей, кроме единицы;
44 = 2 * 2 * 11 65 = 5 * 13
НОД (44 и 65) = 1 - числа 44 и 65 взаимно простые, так как у них нет общих простых множителей, кроме единицы;
a = 2 * 2 * 3 * 5 b = 2 * 3 * 3
НОД (a; b) = 2 * 3 = 6 - наибольший общий делитель;
a = 2 * 3 * 3 * 3 * 11 b = 2 * 2 * 5 * 11
НОД (a; b) = 2 * 11 = 22 - наибольший общий делитель;
a = 2 * 2 * 5 * 7 b = 2 * 7 * 11
НОД (a; b) = 2 * 7 = 14 - наибольший общий делитель;
a = 2 * 2 * 2 * 3 * 3 b = 5 * 7 * 11
НОД (a; b) = 1 - числа а и b взаимно простые, так как у них нет общих простых множителей, кроме единицы.
Чтобы найти НОД (a; b), нужно разложить данные числа на простые множители и найти произведение их совместных простых множителей, взятых с наименьшим показателем степени.
1. Уравнение для числа учеников. По два ученика на каждой скамейке и ещё семеро стоят, вместе получается общее число учеников.2*х+7=у.
2. Уравнение для числа скамеек. Все ученики расселись по трое на скамейку, и ещё пять скамеек осталось. у/3+5=х
3. Решаем систему уравнений. Вместо "у" во втором уравнении записываем выражение из первого уравнения и приводим к общему знаменателю. Получаем: 2х+7+15=3х. Решаем: х=22-это число скамеек.
4. Подставляем найденный результат в первое уравнение и получаем у=2*22+7=51 -это число учеников.
ответ: 22 скамеек, 51 ученик.