шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.
x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.
шаг 2: находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.
первообразная этой функции будет y = -1/2*x^2 + 3x + с
подставляя пределы интегрирования получаем площадь под функцией s1 = -1/2 + 3 + 2 + 6 = 10,5.
шаг 3: находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.
первообразная этой функции будет y = 1/3*x^3 + x + с
подставляя пределы интегрирования получаем площадь под функцией s2 = 1/3 + 1 + 8/3 +2 = 6.
шаг 4: s = s1-s2; s = 10,5-6; s = 4,5.
1)Поскольку угол ВАС = углу ВСА, то треугольник ВАС - равнобедренный. Тогда ВА = ВС.
Поскольку СС1 - бисектриса, то угол АСС1 = углу ВСС1.
Поскольку АА1 - бисектриса, то угол САА1 = углу ВАА1.
У треугольников АСС1 и САА1:
1) ВА = ВС
2) Угол АСС1 = углу САА1
3) АС - общая сторона
За 1 признаком равности треугольников треугольник АСС1 = треугольнику САА1. У равных треугольников соответствующие углы и стороны равны. Тогда угол ОАС = углу ОСА. Поэтому треугольник АОС равнобедренный.
2)АВ возьмем за х (икс)
тогда ВС = 2х
АС = х+8
х+2х+х+8=92
4х+8=92
4х=84
х=21
значит, АВ = 21 см; ВС = 42 см; АС =29 см
3)Т.к треугольник равнобедренный, то а=в=х, тогда третья сторона равна х+10. Зная, что периметр равен 37см., составим уравнение:
х+х+(х+10)=37
3х=27
х=9см- боковые стороны равноб. треугольника.
9+10=19см-основание треугольника
4) (скриншот)
(8/10)^(3-2x)= (0,8)²
3-2x=2
x=0,5