М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DSenTinor1
DSenTinor1
07.10.2021 20:35 •  Математика

Бісектриса гострого кута а паралелограма авсд ділить сторону bc на відрізки 5 см і 6 см рахуючи від вешини тупого кута знайдіть периметер паралелограма

👇
Ответ:
ВС=АД=11см
кут ВСК=куту СКД як внутрішні різносторонні також вони дорівнюють куту КСД тому що бісектриса поділила їх і т.д)
Тоді трикутник КСД-рівнобедренний оскільки кути при основі рівні.
Тоді СД=КД=5 см
Ну тоді периметр:
Р=10+22=32см)
4,7(56 оценок)
Открыть все ответы
Ответ:
asdfghjkl107
asdfghjkl107
07.10.2021

После возведения  в квадрат получим:

1) Sin² x = 2Cos x - 0,25

1 - Cos² x -2Cos x + 0,25 = 0

-Cos² x - 2Cos x +1,25 = 0  

Решаем как квадратное по чётному коэффициенту:

Cos x = (1 +-√2,25)/-1 = (1 +-1,5) /-1

а)Cos x = -2,5              б) Cos x = -1/2

нет решений                       х = +- arcCos(-1/2) + 2πк, к∈Z

                                         x = +- 2π/3 + 2πк, к ∈Z

2) Теперь проверяем промежуток

к = -1

х = 2π/3 - π (не входит  в промежуток)

х = -2π/3 - π( не входит в промежуток)

к = -2

х = 2π/3 - 2π ( не входит в промежуток)

х  = -  2π/3 - 2π = -8π/3 ( входит в промежуток)  

к = -3

х = 2π/3 - 3π = -2 1π/3 (входит)

х =- 2π/3 - π  - 1 2/3 π( входит)

к = -4

х = 2π/3 - 4π =  - 3 1/3π (входит)

х =- 2π/3 - 4π (не входит)

к = -5  

х = 2π/3 - 5π=  - 4 1/3 π( входит)

х =- 2π/3 -5 π (не входит)

Пошаговое объяснение:

4,4(42 оценок)
Ответ:
soffffa0790
soffffa0790
07.10.2021
Положение центра вписанной окружности определим, узнав высоту трапеции.
H= \sqrt{5^2- (\frac{8-2}{2})^2} = \sqrt{25-9} = \sqrt{16}=4.
Тогда r = 4/2 = 2.
Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание.
Диагональ равна:
D= \sqrt{4^2+( \frac{8}{2} + \frac{2}{2})^2 } = \sqrt{16+25} = \sqrt{41}.
Радиус описанной окружности равен:
R= \frac{abc}{4S} .
Площадь треугольника равна:
S = (1/2)*8*4 = 16 кв.ед.
Тогда R= \frac{5*8* \sqrt{41} }{4*16} = \frac{5 \sqrt{41} }{8} =4,00195.
Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение:
H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 =  3.875.
Отсюда Δ =  3.875 - 4 = -0,125.
Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания.
ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
4,5(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ