ответ: lim xn=ln2.
Пошаговое объяснение:
Так как n≠0, то выражение 2^(1/n), а вместе с ним и выражение xn=n*[2^(1/n)-1], определены при любом натуральном n. Для нахождения предела последовательности положим 1/n=m. Тогда n=1/m, при n⇒∞ m⇒0 и выражение примет вид: (2^m-1)/m. Если m⇒0, то 2^m-1⇒0 и мы имеем неопределённость вида 0/0. Для нахождения её предела используем правило Лопиталя: (2^x-1)'=(2^x)*ln2, x'=1, поэтому искомый предел равен пределу выражения (2^x-1)'/x'=(2^x)*ln2 при x⇒0. Очевидно что этот предел равен ln2.
Уравнения не имеющие корней:
13+28x=5x+17+23x и 9-16y=20-31y+15y
Уравнения, имеющие бесконечное множество корней:
5-3x+4=17x+9-20x и 3/4y +2y+5=2.3/4y +4,1+0,9
Пошаговое объяснение:
1) 13+28x=5x+17+23x
13+28x=28x+17
28x-28x=17-13
0x=4
Уравнение не имеет корней
2) 5-3x+4=17x+9-20x
9-3x=9-3x
Уравнение имеет бесконечное множество корней
3) 3/4y +2y+5=2.3/4y +4,1+0,9
2.3/4y+5=2.3/4y+5
Уравнение имеет бесконечное множество корней
4) 9-16y=20-31y+15y
9-16y=20-16y
16y-16y=20-9
0y=11
Уравнение не имеет корней