Рассмотрим каждое неравенство: 1) x2+64<0 x2<-64 Квадрат любого числа является числом положительным, следовательно, ни при каких x x2 не может быть меньше отрицательного числа. Поэтому данное неравенство не имеет решений. 2) x2+64>0 x2>-64 Как говорилось ранее, x2 - число положительное, следовательно, для любого x это неравенство верно. Т.е. решение данного неравенства x⊂(-∞;+∞) 3) x2-64>0 x2>64 Очевидно, что найдутся такие x, что x2>64 (например x=100). Следовательно, данное неравенство имеет решения. 4) x2-64<0 x2<64 Очевидно, что найдутся такие x, что x2<64 (например x=1). Следовательно, данное неравенство имеет решения. ответ: 1)
y=(x²+25)/x [-10;-1]
y`=((x²+25)/x)`=0
((x²+25)`*x-(x²+25)*x`)/x²=0
(2x*x-(x²+25)*1)=0
2x²-x²-25=0
x²=25
x₁=-5 x₂=5 ∉[-10;-1]
y(-5)=((-5)²+25)/(-5)=50/(-5)=-10=yнаиб
y(-10)=((-10)²+25)/(-10)=125/(-10)=-12,5
y(-1)=((-1)²+25)/(-1)=26/(-1)=-26.
ответ: yнаиб=-10.